Some Useful Formulae for Particle Size Distributions and Optical Properties

R.G. Grainger

9 June 2022
Acknowledgements

I would like to acknowledge helpful comments that improved this manuscript from Dwaipayan Deb and Rob Levy.
Contents

1 Describing Particle Size
 1.1 Particle Size Distribution .. 1
 1.2 Metrics of Distribution Centre & Spread 2
 1.3 Effective Radius and Effective Variance 3
 1.4 Moments .. 3
 1.5 Area, Volume and Mass Distributions 4

2 Normal and Logarithmic Normal Distributions 5
 2.1 Definitions ... 5
 2.2 Properties of the log-normal Distribution 10
 2.2.1 Median and Mode ... 10
 2.2.2 Moments ... 11
 2.2.3 Derived Metrics ... 11
 2.2.4 Derivatives .. 12
 2.3 Log-normal Distributions of Area and Volume 12

3 The Modified Gamma and Gamma Distributions 18
 3.1 Modified Gamma Distribution 18
 3.2 Gamma Distribution .. 20

4 Other Distributions .. 22
 4.1 Inverse Modified Gamma Distribution 22
 4.2 Regularized Power Law ... 23
 4.2.1 Moments ... 24

5 Modelling the Evolution of an Aerosol Size Distribution 25

6 Optical Properties .. 26
 6.1 Volume Absorption, Scattering and Extinction Coefficients ... 26
 6.2 Back Scatter ... 27
 6.3 Phase Function .. 27
 6.4 Single Scatter Albedo ... 27
 6.5 Asymmetry Parameter .. 27
 6.6 Integration ... 27
 6.7 Formulae for Practical Use 28
 6.8 Cloud Liquid Water Path 30
 6.9 Aerosol Mass ... 30

List of Symbols ... 34

References .. 35

Index ... 36
Note that this is a working draft. Comments that will be excluded from the final text are indicated by ■ XXX ■.
1 Describing Particle Size

Atmospheric particles come in a variety of compositions and sizes. There are three main classes: aerosols, water droplets and ice crystals. But that is just a start, a complete description of an ensemble of particles would encompass the composition and geometry of each particle. Such an approach is impracticable. For example atmospheric aerosols have concentrations as high as $\sim 10,000$ particles per cm3. An alternate approach is to use a statistical description of the particle size distribution. This is assisted by the fact that small liquid drops adopt a spherical shape so that for a chemically homogeneous particle the problem becomes one of representing the number distribution of particle radii. The particle size distribution can be represented in tabular form but it is usual to adopt an analytic functional. The success of this approach hinges upon the selection of an appropriate size distribution function that approximates the actual distribution. There is no a priori reason for assuming this can be done.

1.1 Particle Size Distribution

A measured distribution of particle sizes can be described by a histogram of the number of particles per unit volume within defined size bins. By making the bin size tend to zero a continuous function is formed called the radius number density distribution $N(r)$ which represents the number of particles with radii between r and $r + dr$ per unit volume. The difficulty with this representation is that it is unmeasurable! This is because there are an infinite number of radius values so that the probability of the radius being any one specific value is zero. The problem is avoided by using the differential radius number density distribution $n(r)$ defined by

$$n(r) = \frac{dN(r)}{dr}. \quad (1)$$

The same equation can be written in integral form as

$$dN(r) = \int_r^{r+dr} n(r) \, dr. \quad (2)$$

The total number of particles per unit volume, N_0, is given by

$$N_0 = \int_0^\infty n(r) \, dr. \quad (3)$$

The total surface area of the distribution or surface area density is defined

$$a_V = 4\pi \int_0^\infty r^2 n(r) \, dr. \quad (4)$$
and similarly the volume density is found from

\[v_v = \frac{4}{3} \pi \int_0^\infty r^3 n(r) \, dr. \] (5)

It follows that the mass density is

\[m_v = \rho v_v \] (6)

where \(\rho \) is the density of the substance forming the particles.

1.2 Metrics of Distribution Centre & Spread

Generally a size distribution is characterised by the total number of particles per unit volume, its centre and by its spread. The centre of a distribution can be represented by

- **the mean** \(\mu_0 \) is the arithmetic average defined by

\[\mu_0 = \frac{\int_0^\infty rn(r) \, dr}{N_0}. \] (7)

- **the geometric mean** \(\mu_g \) is defined by

\[\mu_g = \exp \left(\frac{\int_0^\infty \ln r n(r) \, dr}{N_0} \right) \] (8)

- **the mode** is the location of the peak (maximum) value of a size distribution.

- **the median** is the “middle” value of a data set, i.e. 50% of particles are smaller than the median (and so 50% of particles are larger).

The spread of the size distribution is captured through

- **the variance** \(\sigma_0^2 \) defined

\[\sigma_0^2 = \frac{\int_0^\infty (r - \mu_0)^2 n(r) \, dr}{N_0}. \] (9)

The standard deviation, \(\sigma_0 \), of a distribution is the square root of the variance.

- **the geometric standard deviation** \(\sigma_g \) defined

\[\sigma_g = \exp \left[\sqrt{\frac{\int_0^\infty (\ln r - \ln \mu_g)^2 n(r) \, dr}{N_0}} \right]. \] (10)
1.3 Effective Radius and Effective Variance

The mean along with other size distribution metrics can be helpful in describing a particle distribution, but by far the most useful for optical measurements is the effective radius, \(r_e \). The advantage of using the effective radius comes from the fact that energy removed from a light beam by a particle is proportional to the particle’s area (provided the radius of the particle is similar to, or larger than, the wavelength of the incident light). Weighting each radius by \(\pi r^2 n(r) \) gives

\[
r_e = \frac{\int_0^\infty r \pi r^2 n(r) \, dr}{\int_0^\infty \pi r^2 n(r) \, dr}.
\]

(11)

The effective radius is sometimes called the area-weighted mean radius. In an equivalent manner the effective variance for a distribution can be defined (Hansen 1971)

\[
v_e = \frac{\int_0^\infty (r - r_e)^2 \pi r^2 n(r) \, dr}{r_e^2 \int_0^\infty \pi r^2 n(r) \, dr}
\]

(12)

The factor \(r_e^2 \) is included in the denominator to make \(v_e \) dimensionless and a relative measure.

1.4 Moments

The \(i \)th moment \(m_i \) of a distribution \(n(r) \) is defined

\[
m_i = \int_0^\infty (r - c)^i n(r) \, dr
\]

(13)

where \(c \) is some constant. Choosing \(c = 0 \) gives the raw moment. Choosing \(c \) to be the distribution mean generates central moments. Moments depend upon the shape of the \(n(r) \) and can be used to calculate some common metrics listed in Table 1. Note that the geometric mean (or variance) is not necessarily expressible in moments but Vogel (2020) provides expressions for most of the common distributions.
Some Useful Formulae for Particle Size Distributions and Optical Properties

Table 1: Size distribution metrics expressed in terms of the raw moments.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>number density</td>
<td>$\bar{N}_0 = m_0$</td>
</tr>
<tr>
<td>surface area density</td>
<td>$a_v = 4\pi m_2$</td>
</tr>
<tr>
<td>volume density</td>
<td>$v_v = \frac{4}{3}\pi m_3$</td>
</tr>
<tr>
<td>mean radius</td>
<td>$\mu_0 = \frac{m_1}{m_0}$</td>
</tr>
<tr>
<td>variance</td>
<td>$\sigma_0^2 = \frac{m_2}{m_0} - \frac{m_1^2}{m_0^2}$</td>
</tr>
<tr>
<td>effective radius</td>
<td>$r_e = \frac{m_2}{m_0} - \frac{m_1^2}{m_0^2}$</td>
</tr>
<tr>
<td>effective variance</td>
<td>$v_e = \frac{m_4}{m_2^2} - 1$</td>
</tr>
</tbody>
</table>

1.5 Area, Volume and Mass Distributions

Analogous to the description of the distribution of particle number with radius it is also possible to describe particle area, volume or mass with equivalent expressions to Equations 2 and 3. This gives rise to multiple ways of expressing a particle distribution and it is often necessary to swap from one representation to another.

The distribution of particle area can be represented by a differential area density distribution, $a(r)$ which represents the area of particles whose radii lie between r and $r + dr$ per unit volume, i.e.

$$A(r) = \int_{r}^{r+dr} a(r) \, dr.$$ \hspace{1cm} (14)

Hence

$$a(r) = \frac{dA}{dr}.$$ \hspace{1cm} (15)

For spherical particles

$$a(r) = \frac{dA}{dN} = 4\pi r^2 n(r).$$ \hspace{1cm} (16)

The total particle area per unit volume, A_0, is then given by

$$A_0 = \int_{0}^{\infty} a(r) \, dr.$$ \hspace{1cm} (17)

The distribution of particle volume can be represented by a differential volume density distribution, $v(r)$ which represents the volume contained in particles whose radii lie between r and $r + dr$ per unit volume, i.e.

$$V(r) = \int_{r}^{r+dr} v(r) \, dr.$$ \hspace{1cm} (18)
Hence

\[v(r) = \frac{dV}{dr}. \] \hfill (19)

For spherical particles

\[v(r) = \frac{dV}{dN} \frac{dN}{dr} = \frac{4}{3} \pi r^3 n(r). \] \hfill (20)

The total particle area per unit volume, \(V_0 \), is given by

\[V_0 = \int_0^\infty v(r) \, dr. \] \hfill (21)

The distribution of mass can be represented by a differential mass density distribution, \(m(r) \) which represents the mass contained in particles with radii between \(r \) and \(r + dr \) per unit volume, i.e.

\[M(r) = \int_r^{r+dr} m(r) \, dr. \] \hfill (22)

Hence

\[m(r) = \frac{dM}{dr}. \] \hfill (23)

For spherical particles

\[m(r) = \frac{dM}{dN} \frac{dN}{dr} = \frac{4}{3} \pi r^3 \rho n(r), \] \hfill (24)

where \(\rho \) is the density of the aerosol material. The total particle mass per unit volume, \(M_0 \), is

\[M_0 = \int_0^\infty m(r) \, dr. \] \hfill (25)

2 Normal and Logarithmic Normal Distributions

2.1 Definitions

One particle distribution to consider adopting is the normal distribution

\[n(r) = \frac{N_0}{\sqrt{2\pi} \sigma_0} \exp \left[-\frac{(r - \mu_0)^2}{2\sigma_0^2} \right]. \] \hfill (26)
where μ_0 is the mean and σ_0 is the standard deviation of the distribution. An example is shown in Figure 1. The distribution is symmetric about the mean so the mean, median and mode of a normal distribution all have the same value.
Aside 2.1

Show that μ_0 and σ_0^2 are the mean and variance of the normal distribution. The following derivations all use the same substitution, i.e.\n
$$x = \frac{r - \mu_0}{\sqrt{2} \sigma_0}$$

Firstly

$$\int_{-\infty}^{\infty} n_r(r) \, dr = \int_{-\infty}^{\infty} \frac{N_0}{\sqrt{2\pi} \sigma_0} \exp \left[-\frac{(r - \mu_0)^2}{2\sigma_0^2} \right] \, dr$$

$$= \frac{N_0}{\sqrt{2\pi} \sigma_0} \int_{-\infty}^{\infty} \exp \left(-x^2 \right) \sqrt{2} \sigma_0 \, dx$$

$$= \frac{N_0}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(-x^2 \right) \, dx = N_0$$

The mean is given by

$$\frac{\int_{-\infty}^{\infty} r n_r(r) \, dr}{\int_{-\infty}^{\infty} n_r(r) \, dr} = \frac{1}{N_0} \int_{-\infty}^{\infty} r \frac{N_0}{\sqrt{2\pi} \sigma_0} \exp \left[-\frac{(r - \mu_0)^2}{2\sigma_0^2} \right] \, dr$$

$$= \frac{1}{\sqrt{2\pi} \sigma_0} \int_{-\infty}^{\infty} \exp \left(-x^2 \right) (\sqrt{2} \sigma_0 x + \mu_0) \sqrt{2} \sigma_0 \, dx$$

$$= \frac{\mu_0}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(-x^2 \right) \, dx + \frac{\sqrt{2} \sigma_0}{\sqrt{\pi}} \int_{-\infty}^{\infty} x \exp \left(-x^2 \right) \, dx = \mu_0$$

The variance is given by

$$\frac{\int_{-\infty}^{\infty} (r - \mu_0)^2 n_r(r) \, dr}{N_0} = \frac{1}{N_0} \int_{-\infty}^{\infty} (r - \mu_0)^2 \frac{N_0}{\sqrt{2\pi} \sigma_0} \exp \left[-\frac{(r - \mu_0)^2}{2\sigma_0^2} \right] \, dr$$

$$= \frac{1}{\sqrt{2\pi} \sigma_0} \int_{-\infty}^{\infty} 2\sigma_0^2 x^2 \exp \left(-x^2 \right) \sqrt{2} \sigma_0 \, dx$$

$$= \frac{2}{\sqrt{\pi}} \sigma_0^2 \int_{-\infty}^{\infty} x^2 \exp \left(-x^2 \right) \, dx = \sigma_0^2$$

The range of particle sizes generally covers several orders of magnitude. As a result fitting an ensemble of measured particle size with the normal distribution is often poor, typically indicated by a very large standard deviation.
A further drawback of the normal distribution is that it allows negative radii. Particle distributions are much better represented by a normal distribution of the logarithm of the particle radii. Letting \(l = \ln(r) \) we have

\[
n_l(l) = \frac{dN(l)}{dl} = \frac{N_0}{\sqrt{2\pi} \sigma_l} \exp\left[\frac{(l - \mu_l)^2}{2\sigma_l^2} \right]
\]

(27)

where \(\mu_l \) and \(\sigma_l^2 \) are the mean, and variance of \(l \) respectively. As \(l \) is normally distributed the mean, median and mode in log space all have the same value, \(\mu_l \).

To express the log-normal distribution given in Equation 27 in terms of the linear radius interval \(dr \) note that

\[
\frac{dl}{dr} = \frac{1}{r}
\]

(28)

then

\[
n(r) = \frac{dN(r)}{dr} = \frac{dN(l)}{dl} \frac{dl}{dr} = n_l(l) \frac{dN(r)}{dl} \frac{dl}{dr} = \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \exp\left[-\frac{(\ln r - \mu_l)^2}{2\sigma_l^2} \right]
\]

(29)

Figure 2: Normal and log-normal distributions having the same metrics \(N_0 = 1 \), \(\mu_0 = 5 \) and \(\sigma_0 = 1.5 \).
Figure 2 shows normal and log-normal distributions with the same mean and variance. When compared with a normal distribution the log-normal distribution has a steeper increase in number density approaching the mode from zero and a longer tail for radii greater than the mode. This the mode of the log-normal distribution is smaller than the mode of the normal distribution.

What complicates the representation of a log-normal distribution is that it is rarely expressed in terms μ_l and σ_l. Instead parameters related to radius are used. These two changes are considered in turn.

1. As the logarithm is a monotonic function, the median of the log radius distribution (μ_l) is the log of the median of the radius distribution r_m so

$$\mu_l = \ln r_m$$

(30)

Hence the centre of the distribution (median, mean or mode) in log space is the natural logarithm of the median radius, r_m, in linear space and Equation 31 can be expressed

$$n(r) = \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \exp \left[- \frac{(\ln r - \ln r_m)^2}{2\sigma_l^2} \right]$$

(31)

2. It is possible to show that the log of the geometric mean is the mean (or median or mode) in log space by taking the log of Equation 8 e.g.

$$\ln \mu_g = \left(\frac{\int_0^\infty \ln r \cdot n(r) \, dr}{N_0} \right) = \frac{1}{N_0} \int_{-\infty}^\infty \ln n_l(l) \, dl = \mu_l$$

(32)

Combining with Equation 30 gives

$$\mu_g = r_m$$

(33)

that is, the geometric mean is the same as the median for a log-normal distribution. The geometric standard deviation, S, for a log-normal distribution is calculated by placing this expression into Equation 10 and combining with Equation 31

$$\ln^2 S = \frac{\int_0^\infty (\ln r - \ln r_m)^2}{N_0} \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \exp \left[- \frac{(\ln r - \ln r_m)^2}{2\sigma_l^2} \right] \, dr$$

$$= \frac{1}{\sqrt{2\pi} \sigma_l} \int_0^\infty \frac{(\ln r - \ln r_m)^2}{r} \exp \left[- \frac{(\ln r - \ln r_m)^2}{2\sigma_l^2} \right] \, dr$$

(34)
Making the substitution $x = \frac{(\ln r - \ln r_m)}{\sqrt{2}\sigma_l}$ leads to

$$\ln^2 S = \frac{1}{\sqrt{2\pi}\sigma_l} \int_{-\infty}^{\infty} 2\sigma_l^2 x^2 \exp\left(-x^2\right) \sqrt{2}\sigma_l \, dx$$

$$= \frac{2}{\sqrt{\pi}} \sigma_l^2 \int_{-\infty}^{\infty} x^2 \exp\left(-x^2\right) \, dx = \sigma_l^2$$

$$\Rightarrow \ln S = \sigma_l \quad (35)$$

From this definition S must be greater or equal to one otherwise the log-normal standard deviation is negative. When S is one the distribution is monodisperse. Typical aerosol distributions have S values in the range 1.5 - 2.0.

The log-normal distribution appears in the atmospheric literature using any of combination of r_m or μ and σ ($\equiv \sigma_l$) or S with perhaps the commonest being

$$n(r) = \frac{N_0}{\sqrt{2\pi} \ln(S)} \frac{1}{r} \exp\left[-\frac{(\ln r - \ln r_m)^2}{2\ln^2(S)}\right] \quad (36)$$

Be particularly careful about σ and S whose definitions are sometimes reversed!

2.2 Properties of the log-normal Distribution

2.2.1 Median and Mode

The mode of the log-normal distribution, r_M, is related to the median. Let

$$n(r) = \frac{N_0}{\sqrt{2\pi} \ln(S)} \frac{1}{r} \exp\left[-\frac{(\ln r - \ln r_m)^2}{2\ln^2(S)}\right] = \frac{A}{r} \exp [B] \quad (37)$$

where $A = \frac{N_0}{\sqrt{2\pi} \ln(S)}$, $B = -\frac{(\ln r - \ln r_m)^2}{2\ln^2(S)}$ and $\frac{dB}{dr} = -\frac{(\ln r - \ln r_m)}{\ln^2(S)r}$.

then

$$\frac{dn(r)}{dr} = -\frac{A}{r^2} \exp [B] + \frac{A}{r} \exp [B] \frac{dB}{dr} \quad (38)$$

$$= -\frac{A}{r^2} \exp [B] - \frac{A}{r^2} \exp [B] \frac{(\ln r - \ln r_m)}{\ln^2(S)} \quad (39)$$
Some Useful Formulae for Particle Size Distributions and Optical Properties

Setting the left hand side to zero so \(r = r_M \)

\[
0 = -\frac{A}{r_M^3} \exp [B] - \frac{A}{r_M^3} \exp [B] \frac{(\ln r_M - \ln r_m)}{\ln^2(S)} \quad (40)
\]

\[
-1 = \frac{(\ln r_M - \ln r_m)}{\ln^2(S)} \quad (41)
\]

\[
\ln r_M = \ln r_m - \ln^2(S) \quad (42)
\]

2.2.2 Moments

The \(i \)-th raw moment of a log-normal distribution is given by

\[
m_i = N_0 r_m^i \exp \left(\frac{i^2 \ln^2(S)}{2} \right) \quad \equiv N_0 \exp \left(i\mu + \frac{i^2 \sigma_i^2}{2} \right) \quad (43)
\]

The first five raw moments are

\[
m_0 = N_0 \quad (44)
\]

\[
m_1 = N_0 r_m \exp \left(\frac{1}{2} \ln^2 S \right) \quad \equiv N_0 \exp \left(\mu + \frac{\sigma_i^2}{2} \right) \quad (45)
\]

\[
m_2 = N_0 r_m^2 \exp \left(2 \ln^2 S \right) \quad \equiv N_0 \exp \left(2\mu + 2\sigma_i^2 \right) \quad (46)
\]

\[
m_3 = N_0 r_m^3 \exp \left(\frac{9}{2} \ln^2 S \right) \quad \equiv N_0 \exp \left(3\mu + \frac{9}{2} \sigma_i^2 \right) \quad (47)
\]

\[
m_4 = N_0 r_m^4 \exp \left(8 \ln^2 S \right) \quad \equiv N_0 \exp \left(4\mu + \frac{16}{2} \sigma_i^2 \right) \quad (48)
\]

2.2.3 Derived Metrics

The number density, surface area density, volume density, mean radius, variance, effective radius and effective variance of a log-normal distribution are given by

\[
N_0 = m_0 \quad (49)
\]

\[
a_V = 4\pi m_2 = 4\pi N_0 r_m^2 \exp \left(2 \ln^2 S \right) \quad \equiv 4\pi N_0 \exp \left(2\mu + 2\sigma^2 \right) \quad (50)
\]

\[
v_V = \frac{4}{3} \pi m_3 = \frac{4}{3} \pi N_0 r_m^3 \exp \left(\frac{9}{2} \ln^2 S \right) \quad \equiv \frac{4}{3} \pi N_0 \exp \left(3\mu + \frac{9}{2} \sigma^2 \right) \quad (51)
\]

\[
\mu_0 = \frac{m_1}{m_0} = r_m \exp \left(\frac{1}{2} \ln^2 S \right) \quad (52)
\]

\[
\sigma_0^2 = \frac{m_2}{m_0} - \frac{m_1^2}{m_0^2} = r_m^2 \exp \left(\ln^2 S \right) \left[\exp \left(\ln^2 S \right) - 1 \right] \quad (53)
\]

\[
r_e = \frac{m_3}{m_2} = r_m \exp \left(\frac{5}{2} \ln^2 S \right) \quad (54)
\]
Some Useful Formulae for Particle Size Distributions and Optical Properties

\[v_e = \frac{m_2 m_4}{m_3^2} - 1 = \exp \left(\ln^2 S \right) - 1 \quad (55) \]

The log-normal parameters to form a size distribution with mean \(\mu_0 \) and variance \(\sigma_0^2 \) are

\[S = \exp \left[\ln \left(1 + \frac{\sigma_0^2}{\mu_0^2} \right) \right] \quad (56) \]

\[r_m = \frac{\mu_0}{\sqrt{\exp \left(\ln^2 S \right)}} \quad (57) \]

2.2.4 Derivatives

The first derivatives of Equation 36 are

\[\frac{dn}{dN_0} = \frac{n}{N_0} \quad (58) \]

\[\frac{dn}{dr} = -\frac{n}{r} \left[1 + \frac{(\ln r - \ln r_m)}{\ln^2(S)} \right] \quad (59) \]

\[\frac{dn}{dS} = \frac{n}{S \ln(S)} \left[\frac{(\ln r - \ln r_m)^2}{\ln^2(S)} - 1 \right] \quad (60) \]

The second derivatives are:

\[\frac{d^2n}{dN_0^2} = 0 \quad (61) \]

\[\frac{d^2n}{dr^2} = n \left[\frac{2}{r^2} + \frac{3 \ln r - 3 \ln r_m - 1}{r^2 \ln^2(S)} + \frac{(\ln r - \ln r_m)^2}{r^2 \ln^4(S)} \right] \quad (62) \]

\[\frac{d^2n}{dS^2} = n \left[\frac{(\ln r - \ln r_m)^4}{S^2 \ln^6(S)} - \frac{5 (\ln r - \ln r_m)^2}{S^2 \ln^4(S)} - \frac{(\ln r - \ln r_m)^2}{S^2 \ln^3(S)} + \frac{2}{S^2 \ln^2(S)} + \frac{1}{S^2 \ln(S)} \right] \quad (63) \]

2.3 Log-normal Distributions of Area and Volume

Measurements made of particle area or particle volume are often fitted with log-normal distributions in area or volume. The log-normal area density distribution is

\[a(r) = \frac{A_0}{\sqrt{2\pi} \sigma_a r} \exp \left[-\frac{(\ln r - \mu_a)^2}{2\sigma_a^2} \right] \quad (64) \]
Some Useful Formulae for Particle Size Distributions and Optical Properties

where \(A_0 \) is the total aerosol surface area per unit volume, \(\mu_a \) is the radius of the median area and \(\sigma_a \) the geometric standard deviation.

Aside 2.2

Show that log-normal distribution of area can be expressed in terms of a log-normal distribution of number.

Given the expression for the area of a number distribution

\[
a(r) = 4\pi r^2 n(r) = 4\pi r^2 \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \exp \left[-\frac{(\ln r - \mu_l)^2}{2\sigma_l^2} \right]
\]

(65)

make the substitution \(r^2 = \exp(2 \ln r) \) and complete the square to get

\[
a(r) = 4\pi \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \exp \left[-\frac{\ln^2 r - 2 \ln r \mu_l + \mu_l^2 - 4\sigma_l^2 \ln r}{2\sigma_l^2} \right]
\]

\[
= 4\pi \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \exp \left[-\frac{\ln^2 r - 2 \ln r (\mu_l + 2\sigma_l^2) + (\mu_l + 2\sigma_l^2)^2 - (\mu_l + 2\sigma_l^2)^2 + \mu_l^2}{2\sigma_l^2} \right]
\]

\[
= 4\pi \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \times \exp \left[-\frac{\ln^2 r - 2 \ln r (\mu_l + 2\sigma_l^2) + (\mu_l + 2\sigma_l^2)^2 - (\mu_l + 2\sigma_l^2)^2 + \mu_l^2}{2\sigma_l^2} \right]
\]

\[
= 4\pi \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \exp \left[-\frac{\ln r - \mu_l + 2\sigma_l^2}{2\sigma_l^2} \right] \exp \left[-\frac{(\ln r - \mu_l + 2\sigma_l^2)^2 - 4\mu_l \sigma_l^2}{2\sigma_l^2} \right]
\]

(66)

Giving

\[
a(r) = 4\pi \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \exp \left[2\mu_l + 2\sigma_l^2 \right] \exp \left[-\frac{(\ln r - \mu_l + 2\sigma_l^2)^2}{2\sigma_l^2} \right]
\]

(66)

Equating Equations 64 and 66 gives

\[
\frac{A_0}{\sqrt{2\pi} \sigma_a} \frac{1}{r} \exp \left[-\frac{(\ln r - \mu_a)^2}{2\sigma_a^2} \right]
\]

\[
= 4\pi \frac{N_0}{\sqrt{2\pi} \sigma_l} \frac{1}{r} \exp \left[2\mu_l + 2\sigma_l^2 \right] \exp \left[-\frac{(\ln r - \mu_l + 2\sigma_l^2)^2}{2\sigma_l^2} \right]
\]

(67)

which is true if

\[
\frac{A_0}{\sigma_a} = \frac{4\pi N_0}{\sigma_l} \exp \left[2\mu_l + 2\sigma_l^2 \right]
\]

(68)
and
\[
\frac{(\ln r - \mu_a)^2}{2\sigma_a^2} = \frac{(\ln r - (\mu_l + 2\sigma_l^2))^2}{2\sigma_l^2}\quad(69)
\]
From Equation 50
\[
A_0 = 4\pi N_0 \exp\left(2\mu_l + 2\sigma_l^2\right)
\quad(70)
\]
which gives \(\sigma_a = \sigma_l\) when inserted into Equation 68. This shows that if the number density distribution is log-normal then the surface area density distribution is log-normal with the same geometric standard deviation. Applying this result to Equation 69 gives
\[
\mu_a = \mu_l + 2\sigma_l^2.
\quad(71)
\]
This states that the area median radius is greater than the median radius.
Equivalent expressions can be calculated for a volume density distribution, \(v(r)\) defined in Section 1.5. The log-normal volume density distribution is
\[
v(r) = \frac{V_0}{\sqrt{2\pi} \sigma_v r} \exp\left[-\frac{(\ln r - \mu_v)^2}{2\sigma_v^2}\right]
\quad(72)
\]
where \(V_0\) is the total aerosol volume per unit volume, \(\mu_v\) is the radius of the median volume and \(\sigma_v\) the geometric standard deviation.
Aside 2.3

Show that log-normal distribution of volume can be expressed in terms of a log-normal distribution of number.

Given the expression for the volume of a number distribution

\[v(r) = \frac{4}{3} \pi r^3 n(r) = \frac{4}{3} \pi r^3 \frac{N_0}{\sqrt{2\pi \sigma_i}} \exp \left[-\frac{(\ln r - \mu)^2}{2\sigma_i^2} \right] \]

(73)

make the substitution \(r^3 = \exp(3 \ln r) \) and complete the square to get

\[
v(r) = \frac{4}{3} \pi N_0 \frac{1}{\sqrt{2\pi \sigma_i}} \exp \left[\frac{-\ln^2 r - 2 \ln r \mu_1 + \mu_1^2 - 6\sigma_i^2 \ln r}{2\sigma_i^2} \right]
\]

(74)

Equating with Equations 72 and 74 gives

\[
\frac{V_0}{\sqrt{2\pi \sigma_v}} \frac{1}{r} \exp \left[\frac{-(\ln r - \mu_v)^2}{2\sigma_v^2} \right] = \frac{4}{3} \pi N_0 \frac{1}{\sqrt{2\pi \sigma_i}} \exp \left[3\mu_i + 4.5\sigma_i^2 \right] \exp \left[-\frac{(\ln r - (\mu_1 + 3\sigma_i^2))^2}{2\sigma_i^2} \right]
\]

(75)

which is true if

\[
\frac{V_0}{\sigma_v} = \frac{4}{3} \pi \frac{N_0}{\sigma_i} \exp \left[3\mu_i + 4.5\sigma_i^2 \right]
\]

(76)

and

\[
\frac{(\ln r - \mu_v)^2}{2\sigma_v^2} = \frac{(\ln r - (\mu_1 + 3\sigma_i^2))^2}{2\sigma_i^2}
\]

(77)
Some Useful Formulae for Particle Size Distributions and Optical Properties

Table 2: Relationships area and volume density log-normal parameters and the number size distribution parameters, \(N_0, \mu_l \) and \(\sigma_l \).

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Parameters</th>
<th>Relation to Number Density Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area density</td>
<td>(A_0)</td>
<td>(4\pi N_0 \exp (2\mu_l + 2\sigma_l^2))</td>
</tr>
<tr>
<td></td>
<td>(\mu_a)</td>
<td>(\mu_l + 2\sigma_l^2)</td>
</tr>
<tr>
<td></td>
<td>(\sigma_a)</td>
<td>(\sigma_l)</td>
</tr>
<tr>
<td>Volume density</td>
<td>(V_0)</td>
<td>(\frac{4}{3}\pi N_0 \exp (3\mu_l + 4.5\sigma_l^2))</td>
</tr>
<tr>
<td></td>
<td>(\mu_v)</td>
<td>(\mu_l + 3\sigma_l^2)</td>
</tr>
<tr>
<td></td>
<td>(\sigma_v)</td>
<td>(\sigma_l)</td>
</tr>
</tbody>
</table>

Table 3: Values derived for a log-normal number density size distribution with \(S = 1.5 \).

<table>
<thead>
<tr>
<th>Median Radius</th>
<th>Mean Radius</th>
<th>Effective Radius</th>
<th>Area Median Radius</th>
<th>Volume Median Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>3.3</td>
<td>2.6</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>6.6</td>
<td>5.2</td>
<td>8.5</td>
</tr>
<tr>
<td>5</td>
<td>6.4</td>
<td>17</td>
<td>13.</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>33</td>
<td>26</td>
<td>42</td>
</tr>
</tbody>
</table>

From Equation 51

\[
V_0 = \frac{4}{3}\pi N_0 \exp \left(3\mu_l + 4.5\sigma_l^2\right) \tag{78}
\]

which gives \(\sigma_v = \sigma_l \) when inserted into Equation 76. This shows that if the number density distribution is log-normal then the volume density distribution is log-normal with the same geometric standard deviation. Applying this result to Equation 77 gives

\[
\mu_v = \mu_l + 3\sigma_l^2. \tag{79}
\]

They relationships area and volume density log-normal parameters and the number size distribution parameters are summarised in Table 2. They can be used to calculate the distribution centre metric for a log-normal distribution in number density that has been represented by either a log-normal area density distribution or a log-normal volume density distribution. Table
3 shows some derived values which underline how careful one has to be with terminology. For example two scientist could be at odds claiming 'the centre' of the size distribution was 1 or 8.4 µm. The issue could be resolved when it is realised scientist A is using the median radius to represent 'the centre' while scientist B was using volume median diameter.
3 The Modified Gamma and Gamma Distributions

3.1 Modified Gamma Distribution

The modified (or generalized) gamma distribution was introduced to represent particle size distributions in the Earth’s atmosphere by Deirmendjian (1963) as

\[n(r) = ar^\alpha \exp(-br^\gamma). \]

(80)

The four constants \(a, \alpha, b, \gamma \) are positive and real and \(\alpha \) is an integer. It is a mathematically convenient model for size distributions of particle types ranging from aerosols and cloud droplets or ice particles to liquid and frozen precipitation (Petty & Huang 2011).

![Graph showing normal and modified gamma distributions.]

Figure 3: Normal and normalised modified gamma distributions \((a = 0.012, b = 8.7 \times 10^{-6}, \alpha = 2, \gamma = 6.19)\) having the same metrics \(N_0 = 1, \mu_0 = 5\) and \(\sigma_0 = 1.5\).
Some Useful Formulae for Particle Size Distributions and Optical Properties

The mode of the distribution occurs where \(r = \left(\frac{\alpha}{b} \right)^{1/\gamma} \). The raw moments of a modified gamma distribution are (see $3 \cdot 478/1$ of Gradshteyn & Ryzhik 1994)

\[
m_i = \frac{a}{\gamma} b^{-\frac{\alpha+i+1}{\gamma}} \Gamma \left(\frac{\alpha + i + 1}{\gamma} \right).
\]
(81)

The first five raw moments of the modified gamma distribution are

\[
m_0 = \frac{a}{\gamma} b^{-\frac{\alpha+1}{\gamma}} \Gamma \left(\frac{\alpha + 1}{\gamma} \right)
\]

\[
m_1 = \frac{a}{\gamma} b^{-\frac{\alpha+2}{\gamma}} \Gamma \left(\frac{\alpha + 2}{\gamma} \right)
\]

\[
m_2 = \frac{a}{\gamma} b^{-\frac{\alpha+3}{\gamma}} \Gamma \left(\frac{\alpha + 3}{\gamma} \right)
\]

\[
m_3 = \frac{a}{\gamma} b^{-\frac{\alpha+4}{\gamma}} \Gamma \left(\frac{\alpha + 4}{\gamma} \right)
\]

\[
m_4 = \frac{a}{\gamma} b^{-\frac{\alpha+5}{\gamma}} \Gamma \left(\frac{\alpha + 5}{\gamma} \right)
\]

The moments of the modified gamma distribution can be used to find the derived metrics:

\[
N_0 = m_0 = \frac{a}{\gamma} b^{-\frac{\alpha+1}{\gamma}} \Gamma \left(\frac{\alpha + 1}{\gamma} \right)
\]
(82)

\[
a_N = 4\pi m_2 = 4\pi \frac{a}{\gamma} b^{-\frac{\alpha+3}{\gamma}} \Gamma \left(\frac{\alpha + 3}{\gamma} \right)
\]
(83)

\[
v_N = \frac{4}{3} \pi m_3 = \frac{4}{3} \pi \frac{a}{\gamma} b^{-\frac{\alpha+4}{\gamma}} \Gamma \left(\frac{\alpha + 4}{\gamma} \right)
\]
(84)

\[
\mu_0 = \frac{m_1}{m_0} = \frac{b^{-\frac{1}{\gamma}} \Gamma \left(\frac{\alpha+2}{\gamma} \right)}{\Gamma \left(\frac{\alpha+1}{\gamma} \right)}
\]
(85)

\[
\sigma_0^2 = \frac{m_2}{m_0} - \frac{m_1^2}{m_0^2}
\]
(86)

\[
= \frac{a}{\gamma} b^{-\frac{\alpha+3}{\gamma}} \Gamma \left(\frac{\alpha+3}{\gamma} \right) - \frac{a}{\gamma} b^{-\frac{\alpha+2}{\gamma}} \Gamma \left(\frac{\alpha+2}{\gamma} \right) \frac{a}{\gamma} b^{-\frac{\alpha+2}{\gamma}} \Gamma \left(\frac{\alpha+2}{\gamma} \right)
\]

\[
= b^{-\frac{2}{\gamma}} \Gamma \left(\frac{\alpha+3}{\gamma} \right) - b^{-\frac{2}{\gamma}} \Gamma^2 \left(\frac{\alpha+2}{\gamma} \right)
\]
(87)

\[
= \frac{b^{-\frac{2}{\gamma}} \Gamma \left(\frac{\alpha+3}{\gamma} \right)}{\Gamma \left(\frac{\alpha+1}{\gamma} \right)} - \frac{b^{-\frac{2}{\gamma}} \Gamma^2 \left(\frac{\alpha+2}{\gamma} \right)}{\Gamma^2 \left(\frac{\alpha+1}{\gamma} \right)}
\]
(88)
Some Useful Formulae for Particle Size Distributions and Optical Properties

\[
\beta_e = \frac{m_3}{m_2} = \frac{b^{-1}\gamma \Gamma \left(\frac{a+4}{\gamma}\right)}{\Gamma \left(\frac{a+3}{\gamma}\right)} \tag{89}
\]

\[
v_e = \frac{\Gamma \left(\frac{a+3}{\gamma}\right) \Gamma \left(\frac{a+5}{\gamma}\right)}{\Gamma \left(\frac{a+4}{\gamma}\right) \Gamma \left(\frac{a+4}{\gamma}\right)} - 1 \tag{90}
\]

3.2 Gamma Distribution

When \(\gamma = 1 \) the modified gamma distribution becomes the gamma distribution.

\[
n(r) = ar^\alpha \exp(-br). \tag{91}
\]

which has a mode value of \(r = \frac{a}{b} \). A version of this function is shown in Figure 4.

![Figure 4: Normal and normalised gamma distributions (a = 0.108, b = 0.6, \(\alpha = 2 \)) having the same metrics \(N_0 = 1, \mu_0 = 5 \) and \(\sigma_0 = 1.5 \).](image)

When \(\alpha \) is an integer the \(i \)-th raw moment of the gamma distribution is
Some Useful Formulae for Particle Size Distributions and Optical Properties

given by

\[m_i = ab^{-\alpha - 1-i} \Gamma (\alpha + i + 1) \]
(92)

\[= ab^{-\alpha - 1-i} (\alpha + i)! \]
(93)

The first five raw moments are

\[m_0 = ab^{-\alpha - 1}\alpha! \]
\[m_1 = ab^{-\alpha - 2}(\alpha + 1)! \]
\[m_2 = ab^{-\alpha - 3}(\alpha + 2)! \]
\[m_3 = ab^{-\alpha - 4}(\alpha + 3)! \]
\[m_4 = ab^{-\alpha - 5}(\alpha + 4)! \]

The moments of the gamma distribution can be used to find the derived metrics:

\[N_0 = ab^{-\alpha - 1}\alpha! \]
(94)

As \(N_0 \) does not equal unity, the parameter \(a \) is not the particle number density unless a normalising factor is included.

\[a_V = 4\pi m_2 = 4\pi ab^{-\alpha - 3}(\alpha + 2)! \]
(95)

\[v_V = \frac{4}{3} \pi m_3 = \frac{4}{3} \pi ab^{-\alpha - 4}(\alpha + 3)! \]
(96)

\[\mu_0 = \frac{m_1}{m_0} = \frac{\alpha + 1}{b} \]
(97)

\[r_e = \frac{m_3}{m_2} = \frac{ab^{-\alpha - 4}(\alpha + 3)!}{ab^{-\alpha - 3}(\alpha + 2)!} \]
(98)

\[= \frac{\alpha + 3}{b} \]
(99)

\[v_e = \frac{m_2 m_4}{m_2^2} - 1 = \frac{ab^{-\alpha - 3}(\alpha + 2)!ab^{-\alpha - 5}(\alpha + 4)!}{ab^{-\alpha - 3}(\alpha + 3)!ab^{-\alpha - 4}(\alpha + 3)!} - 1 \]
(100)

\[= \frac{(\alpha + 4)}{(\alpha + 3)} - 1 \]
(101)

\[= \frac{1}{\alpha + 3} \]
(102)

The final two expression can be used for an alternative formulation of the gamma distribution in \(r_e \) and \(v_e \) (Hansen & Travis 1974)

\[\alpha = \frac{1}{v_e} - 3 = \frac{1 - 3v_e}{v_e} \]
and \(b = \frac{1}{r_e v_e} \)
(103)

\[\Rightarrow n(r) = ar^{\frac{\alpha - 3v_e}{v_e}} \exp \left(-\frac{r}{r_e v_e} \right) \]
(104)
Figure 5 shows a family of distributions based on this expression where \(r_e = 5 \).

![Figure 5: Normalised gamma distributions with \(r_e = 5 \) and a range of \(v_e \) values.](image)

4 Other Distributions

4.1 Inverse Modified Gamma Distribution

The inverse modified gamma distribution is defined by Deepak (1982) as

\[
n(r) = ar^{-\alpha} \exp \left(-br^{-\gamma} \right). \tag{105}\]

The mode of the distribution occurs where \(r = \left(\frac{\alpha}{b} \right)^{1/\gamma} \) and it falls off slowly on the large radius side and exponentially on the small radius side. The raw moments are defined by

\[
m_i = \frac{a b^{-\frac{a-1-i}{\gamma}}} \Gamma \left(\frac{\alpha - 1 - i}{\gamma} \right). \tag{106}\]
Some Useful Formulae for Particle Size Distributions and Optical Properties

Figure 6: Normalised inverse modified gamma distribution \((\alpha = 2, b = 0.01, \gamma = 2)\) and gamma distribution\((b - 10)\).

The normalized inverse modified gamma distribution can be defined

\[
n(r) = a r^{-\alpha} \exp(-br^{-\gamma}) \frac{1}{b} b^{\frac{\alpha - 1}{\gamma}} \Gamma \left(\frac{\alpha - 1}{\gamma} \right). \tag{107}
\]

The raw moments of this distribution are given by

\[
m_i = ab^{\frac{i}{\gamma}} \frac{\Gamma \left(\frac{\alpha - 1 - i}{\gamma} \right)}{\Gamma \left(\frac{\alpha - 1}{\gamma} \right)}. \tag{108}
\]

4.2 Regularized Power Law

The regularized power law is defined by Deepak (1982) as

\[
n(r) = a b^{\alpha - 2} r^{\alpha - 1} \left[1 + \left(\frac{r}{b} \right)^{\alpha} \right]^{-\gamma}, \tag{109}
\]

where the positive constants \(a, b, \alpha, \gamma\) mainly effect the number density, the mode radius, the positive gradient and the negative gradient respectively.
Some Useful Formulae for Particle Size Distributions and Optical Properties

The mode radius is given by

\[r = b \left(\frac{\alpha - 1}{1 + \alpha(\gamma - 1)} \right)^{1/\alpha}, \quad (110) \]

and the raw moments by

\[m_i = \frac{b^i \Gamma(1 + i/\alpha)\Gamma(\gamma - 1 - i/\alpha)}{\alpha \Gamma(\gamma)}. \quad (111) \]

Hence the distribution normalised so that the total number of particles is 1 is

\[n(r) = a\alpha\gamma b^{\alpha-2} \frac{r^{\alpha-1}}{\left[1 + \left(\frac{r}{b}\right)^\alpha\right]^\gamma}. \quad (112) \]

4.2.1 Moments

The first three raw moments are

\[m_1 = \frac{b}{\alpha} \frac{\Gamma(1 + 1/\alpha)\Gamma(\gamma - 1 - 1/\alpha)}{\Gamma(\gamma)} \]
\[m_2 = \frac{b^2}{\alpha} \frac{\Gamma(1 + 2/\alpha)\Gamma(\gamma - 1 - 2/\alpha)}{\Gamma(\gamma)} \]
\[m_3 = \frac{b^3}{\alpha} \frac{\Gamma(1 + 3/\alpha)\Gamma(\gamma - 1 - 3/\alpha)}{\Gamma(\gamma)} \]

The above formulae need to be checked and possibly simplified.

The mean radius, the surface area density and the volume density of a regularized power law distribution are given by

For a regularized power law distribution the effective radius is

\[r_e = \frac{m_3}{m_2} = \frac{a \frac{b^3 \Gamma(1+3/\alpha)\Gamma(\gamma-1-3/\alpha)}{\Gamma(\gamma)}}{a \frac{b^2 \Gamma(1+2/\alpha)\Gamma(\gamma-1-2/\alpha)}{\Gamma(\gamma)}} = \frac{b \Gamma(1 + 3/\alpha)\Gamma(\gamma - 1 - 3/\alpha)}{\Gamma(1 + 2/\alpha)\Gamma(\gamma - 1 - 2/\alpha)}. \quad (113) \]
5 Modelling the Evolution of an Aerosol Size Distribution

For retrieval purposes it is necessary to describe the evolution of an aerosol size distribution. Consider the case where an aerosol size distribution is described by three modes which are parametrized by a mode radius, \(r_{m,i} \) and a spread, \(\sigma_i \). We wish to alter the mixing ratios, \(\mu_i \), of each of the modes to achieve a given effective radius \(r_e \). How do we do this?

Firstly calculate the effective radius of each of the modes according to

\[
r_{e,i} = r_{m,i} \exp\left(\frac{5}{2} \ln^2 S_i\right).
\]

If \(r_e \leq r_{e,1} \) then \(\mu = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) and \(r_m = \begin{pmatrix} r_{e,1}/\exp\left(\frac{5}{2} \ln^2 S_1\right) \\ r_{m,2} \\ r_{m,3} \end{pmatrix} \).

Similarly if \(r_e \geq r_{e,3} \) then \(\mu = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \) and \(r_m = \begin{pmatrix} r_{m,1} \\ r_{m,2} \\ r_{e,1}/\exp\left(\frac{5}{2} \ln^2 S_3\right) \end{pmatrix} \).

If \(r_{e,1} < r_e < r_{e,3} \) then \(\mu_1 \) and is estimated by linearly interpolating between \([0,1]\) as a function of \(r_e \) i.e.

\[
\mu_1 = \frac{r_e - r_{e,1}}{r_{e,3} - r_{e,1}} \quad (115)
\]

We now have two equations

\[
\frac{\mu_1 r_{m,1}^3 \exp\left(\frac{5}{2} \ln^2 S_1\right) + \mu_2 r_{m,2}^3 \exp\left(\frac{9}{7} \ln^2 S_2\right) + \mu_3 r_{m,3}^3 \exp\left(\frac{9}{7} \ln^2 S_3\right)}{\mu_1 r_{m,1}^2 \exp\left(2\ln^2 S_1\right) + \mu_2 r_{m,2}^2 \exp\left(2\ln^2 S_2\right) + \mu_3 r_{m,3}^2 \exp\left(2\ln^2 S_3\right)} = r_e
\]

and two unknowns i.e. \(\mu_2 \) and \(\mu_3 \). The second equation is simplified by substitution i.e.

\[
\frac{A\mu_1 + B\mu_2 + C\mu_3}{D\mu_1 + E\mu_2 + F\mu_3} = r_e \quad (116)
\]

and the two equations solved to give

\[
\mu_2 = \frac{r_e E - B - \mu_1(A - B + r_e(E - D))}{C - B + r_e(E - F)} \quad (117)
\]

\[
\mu_3 = \frac{r_e F - C - \mu_1(A - C + r_e(F - D))}{B - C + r_e(F - E)} \quad (118)
\]
6 Optical Properties

6.1 Volume Absorption, Scattering and Extinction Coefficients

The volume absorption coefficient, $\beta_{\text{abs}}(\lambda, r)$, the volume scattering coefficient, $\beta_{\text{sca}}(\lambda, r)$, and the volume extinction coefficient, $\beta_{\text{ext}}(\lambda, r)$, represent the energy removed from a beam per unit distance by absorption, scattering, and by both absorption and scattering. For a monodisperse aerosol they are calculated from

\[
\begin{align*}
\beta_{\text{abs}}(\lambda, r) &= \sigma_{\text{abs}}(\lambda, r) N(r) = \pi r^2 Q_{\text{abs}}(\lambda, r) N(r), \\
\beta_{\text{sca}}(\lambda, r) &= \sigma_{\text{sca}}(\lambda, r) N(r) = \pi r^2 Q_{\text{sca}}(\lambda, r) N(r), \\
\beta_{\text{ext}}(\lambda, r) &= \sigma_{\text{ext}}(\lambda, r) N(r) = \pi r^2 Q_{\text{ext}}(\lambda, r) N(r),
\end{align*}
\]

where $N(r)$ is the number of particles per unit volume at some radius, r. The absorption cross section, $\sigma_{\text{abs}}(\lambda, r)$, the scattering cross section, $\sigma_{\text{sca}}(\lambda, r)$, and the extinction cross section, $\sigma_{\text{ext}}(\lambda, r)$, are determined from the extinction efficiency factor, $Q_{\text{ext}}(\lambda, r)$, extinction efficiency factor, $Q_{\text{sca}}(\lambda, r)$, extinction efficiency factor, $Q_{\text{abs}}(\lambda, r)$, respectively.

For a collection of particles, the volume coefficients are given by

\[
\begin{align*}
\beta_{\text{abs}}(\lambda) &= \int_0^\infty \sigma_{\text{abs}}(\lambda, r) n(r) \, dr = \int_0^\infty \pi r^2 Q_{\text{abs}}(\lambda, r) n(r) \, dr, \\
\beta_{\text{sca}}(\lambda) &= \int_0^\infty \sigma_{\text{sca}}(\lambda, r) n(r) \, dr = \int_0^\infty \pi r^2 Q_{\text{sca}}(\lambda, r) n(r) \, dr, \\
\beta_{\text{ext}}(\lambda) &= \int_0^\infty \sigma_{\text{ext}}(\lambda, r) n(r) \, dr = \int_0^\infty \pi r^2 Q_{\text{ext}}(\lambda, r) n(r) \, dr,
\end{align*}
\]

where $n(r)$ represents the number of particles with radii between r and $r+dr$ per unit volume. It is also useful to define the quantities per particle i.e.

\[
\begin{align*}
\bar{\sigma}_{\text{abs}}(\lambda) &= \frac{\int_0^\infty \sigma_{\text{abs}}(\lambda, r) n(r) \, dr}{\int_0^\infty n(r) \, dr} = \frac{\beta_{\text{abs}}(\lambda)}{N_0}, \\
\bar{\sigma}_{\text{sca}}(\lambda) &= \frac{\int_0^\infty \sigma_{\text{sca}}(\lambda, r) n(r) \, dr}{\int_0^\infty n(r) \, dr} = \frac{\beta_{\text{sca}}(\lambda)}{N_0}, \\
\bar{\sigma}_{\text{ext}}(\lambda) &= \frac{\int_0^\infty \sigma_{\text{ext}}(\lambda, r) n(r) \, dr}{\int_0^\infty n(r) \, dr} = \frac{\beta_{\text{ext}}(\lambda)}{N_0},
\end{align*}
\]

where $\bar{\sigma}_{\text{abs}}(\lambda)$, $\bar{\sigma}_{\text{sca}}(\lambda)$ and $\bar{\sigma}_{\text{ext}}(\lambda)$ are the mean absorption cross section, the mean scattering cross section and the mean extinction cross section respectively.
6.2 Back Scatter

6.3 Phase Function

The phase function represents the redistribution of the scattered energy.

For a collection of particles, the phase function is given by

\[P(\lambda, \theta) = \frac{1}{\beta_{\text{sca}}} \int_{0}^{\infty} \pi r^2 Q_{\text{sca}}(\lambda, r) P(\lambda, r, \theta)n(r) \, dr. \] \hspace{1cm} (126)

6.4 Single Scatter Albedo

The single scatter albedo is the ratio of the energy scattered from a particle to that intercepted by the particle. Hence

\[\omega(\lambda) = \frac{\beta_{\text{sca}}(\lambda)}{\beta_{\text{ext}}(\lambda)}. \] \hspace{1cm} (127)

6.5 Asymmetry Parameter

The asymmetry parameter is the average cosine of the scattering angle, weighted by the intensity of the scattered light as a function of angle. It has the value 1 for perfect forward scattering, 0 for isotropic scattering and -1 for perfect backscatter.

\[g = \frac{1}{\beta_{\text{sca}}} \int_{0}^{\infty} \pi r^2 Q_{\text{sca}}(\lambda, r) g(\lambda, r)n(r) \, dr \] \hspace{1cm} (128)

6.6 Integration

The integration of an optical properties over size is usually reduced from the interval \(r = [0, \infty] \) to \(r = [r_l, r_u] \) as \(n(r) \to 0 \) as \(r \to 0 \) and \(r \to \infty \). Numerically an integral over particle size becomes

\[\int_{r_1}^{r_u} f(r)n(r) \, dr = \sum_{i=1}^{n} w_i f(r_i) \] \hspace{1cm} (129)

where \(w_i \) are the weights at discrete values of radius, \(r_i \).

For a log normal size distribution the integrals are

\[\beta_{\text{ext}}(\lambda) = \frac{N_0}{\sigma} \sqrt{\frac{\pi}{2}} \int_{r_1}^{r_u} r Q_{\text{ext}}(\lambda, r) \exp \left[-\frac{1}{2} \left(\frac{\ln r - \ln r_m}{\sigma} \right)^2 \right] \, dr \] \hspace{1cm} (130)
Some Useful Formulae for Particle Size Distributions and Optical Properties

\[\frac{N_0}{\sigma} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n} w_i r_i Q_{\text{ext}}(\lambda, r_i) \exp \left[-\frac{1}{2} \left(\frac{\ln r_i - \ln r_m}{\sigma} \right)^2 \right] \]

\[= \sum_{i=1}^{n} w_i' Q_{\text{ext}}(\lambda, r_i) \]

\[\beta_{\text{abs}}(\lambda) = \sum_{i=1}^{n} w_i' Q_{\text{abs}}(\lambda, r_i) \]

\[\beta_{\text{sca}}(\lambda) = \sum_{i=1}^{n} w_i' Q_{\text{sca}}(\lambda, r_i) \]

\[P(\lambda, \theta) = \frac{N_0}{\sigma} \sqrt{\frac{\pi}{2}} \beta_{\text{sca}} \int_0^\infty r Q_{\text{sca}}(\lambda, r) P(\lambda, r, \theta) \exp \left[-\frac{1}{2} \left(\frac{\ln r - \ln r_m}{\sigma} \right)^2 \right] dr \]

\[= \frac{N_0}{\sigma} \sqrt{\frac{\pi}{2}} \beta_{\text{sca}} \sum_{i=1}^{n} w_i' r_i Q_{\text{sca}}(\lambda, r_i) P(\lambda, r_i, \theta) \]

\[g = \frac{N_0}{\sigma} \sqrt{\frac{\pi}{2}} \beta_{\text{sca}} \int_0^\infty r Q_{\text{sca}}(\lambda, r) g(\lambda, r) \exp \left[-\frac{1}{2} \left(\frac{\ln r - \ln r_m}{\sigma} \right)^2 \right] dr \]

\[= \frac{N_0}{\sigma} \sqrt{\frac{\pi}{2}} \beta_{\text{sca}} \sum_{i=1}^{n} w_i' r_i Q_{\text{sca}}(\lambda, r_i) g(\lambda, r_i) \]

where

\[w_i' = \frac{N_0}{\sigma} \sqrt{\frac{\pi}{2}} r_i \exp \left[-\frac{1}{2} \left(\frac{\ln r_i - \ln r_m}{\sigma} \right)^2 \right] w_i \] (131)

6.7 Formulae for Practical Use

As part of the retrieval process it is helpful to have analytic expression for the partial derivatives of \(\beta_{\text{ext}} \) (Equation 130) with respect to the size distribution parameters \((N_0, r_m, \sigma)\).

\[\frac{\partial \beta_{\text{ext}}}{\partial N_0} = \frac{1}{\sigma} \sqrt{\frac{\pi}{2}} \int_0^\infty r Q_{\text{ext}}(\lambda, r) \exp \left[-\frac{(\ln r - \ln r_m)^2}{2\sigma^2} \right] dr, \] (132)

\[\frac{\partial \beta_{\text{ext}}}{\partial r_m} = \frac{N_0}{r_m \sigma^2} \sqrt{\frac{\pi}{2}} \int_0^\infty (\ln r - \ln r_m) r Q_{\text{ext}}(\lambda, r) \exp \left[-\frac{(\ln r - \ln r_m)^2}{2\sigma^2} \right] dr, \] (133)
Some Useful Formulae for Particle Size Distributions and Optical Properties

\[
\frac{\partial \beta^{\text{ext}}}{\partial \sigma} = -\frac{N_0}{\sigma^2} \sqrt{\frac{\pi}{2}} \int_0^{\infty} r Q^{\text{ext}}(\lambda, r) \exp \left[-\frac{(\ln r - \ln r_m)^2}{2\sigma^2}\right] dr \\
+ \frac{N_0}{\sigma} \int_0^{\infty} \frac{(\ln r - \ln r_m)^2}{\sigma^3} r Q^{\text{ext}}(\lambda, r) \exp \left[-\frac{(\ln r - \ln r_m)^2}{2\sigma^2}\right] dr, \\
= \frac{N_0}{\sigma^2} \sqrt{\frac{\pi}{2}} \int_0^{\infty} \left[\frac{(\ln r - \ln r_m)^2}{\sigma^2} - 1\right] r Q^{\text{ext}}(\lambda, r) \exp \left[-\frac{(\ln r - \ln r_m)^2}{2\sigma^2}\right] dr.
\]

(134)

To linearise the retrieval it is better to retrieve \(T = \ln N_0 \) rather than \(N_0 \). In addition to limit the values of \(r_m \) and \(\sigma \) to positive quantities it is better to retrieve \(l_m = \ln r_m \) and \(G = \ln \sigma \). In terms of these new variables volume extinction coefficient for a log normal size distribution is

\[
\beta^{\text{ext}}(\lambda) = \frac{\exp T}{\exp G} \sqrt{\frac{\pi}{2}} \int_{-\infty}^{\infty} e^{2l} Q^{\text{ext}}(l, \lambda) \exp \left[-\frac{(l - l_m)^2}{2 \exp(2G)}\right] dl.
\]

(135)

The partial derivatives of the transformed parameters (Equation 135) are

\[
\frac{\partial \beta^{\text{ext}}}{\partial T} = \frac{\exp T}{\exp G} \sqrt{\frac{\pi}{2}} \int_{-\infty}^{\infty} e^{2l} Q^{\text{ext}}(l, \lambda) \exp \left[-\frac{(l - l_m)^2}{2 \exp(2G)}\right] dl,
\]

(136)

\[
\frac{\partial \beta^{\text{ext}}}{\partial l_m} = \frac{\exp T}{\exp(3G)} \sqrt{\frac{\pi}{2}} \int_{-\infty}^{\infty} (l - l_m) e^{2l} Q^{\text{ext}}(l, \lambda) \exp \left[-\frac{(l - l_m)^2}{2 \exp(2G)}\right] dl,
\]

(137)

\[
\frac{\partial \beta^{\text{ext}}}{\partial G} = -\frac{\exp T}{\exp(G)} \sqrt{\frac{\pi}{2}} \int_{-\infty}^{\infty} e^{2l} Q^{\text{ext}}(l, \lambda) \exp \left[-\frac{(l - l_m)^2}{2 \exp(2G)}\right] dl \\
+ \frac{\exp T}{\exp(3G)} \sqrt{\frac{\pi}{2}} \int_{-\infty}^{\infty} (l - l_m)^2 e^{2l} Q^{\text{ext}}(l, \lambda) \exp \left[-\frac{(l - l_m)^2}{2 \exp(2G)}\right] dl,
\]

(138)
6.8 Cloud Liquid Water Path

The mass l of liquid per unit area in a cloud with a homogeneous size distribution is given by

$$ l = \rho \int_0^\infty \frac{4}{3} \pi r^3 n(r) \, dr \times z $$

where ρ is the density of the cloud material (water or ice) and z is the vertical distance through the cloud. The liquid water path is usually expressed as g m$^{-2}$. Note that

$$ \tau = \beta_{\text{ext}} \times z $$

so

$$ l = \rho \tau \int_0^\infty \frac{4}{3} \pi r^3 n(r) \, dr = \frac{4}{3} \pi \rho \tau \int_0^\infty \frac{r^3 n(r) \, dr}{\pi r^2 Q_{\text{ext}}(\lambda, r) n(r) \, dr}. $$

For drops large with respect to wavelength we assume $Q_{\text{ext}}(\lambda, r) = 2$. Hence

$$ l = \frac{4}{6} \rho \tau \int_0^\infty \frac{r^3 n(r) \, dr}{\pi^2 r^2} = \frac{2}{3} \rho \tau r_e $$

So for a water cloud ($\rho = 1$ g cm$^{-3}$) of $\tau = 10$, $r_e = 15$ μm we get

$$ l = \frac{2}{3} \times 1 \times 10 \times 15 \text{ g cm}^{-3} \text{μm} = 100 \text{ g m}^{-2} $$

While for an ice cloud (-45 °C, $\rho = 0.920$ g cm$^{-3}$) of $\tau = 1$, $r_e = 25$ μm we get

$$ l = \frac{2}{3} \times 0.92 \times 1 \times 25 \text{ g cm}^{-3} \text{μm} = 15 \text{ g m}^{-2} $$

6.9 Aerosol Mass

Consider the measurement of optical depth and effective radius made by an imaging instrument. How can this be related to the mass of aerosol present in the atmosphere? Consider a volume observed by the instrument whose
area is A. If ρ is the density of the aerosol and Z is the height of this volume then the total mass of aerosol, M, in the box is given by

$$M = \rho \times v \times N \times A \times Z$$ \hspace{1cm} (146)$$

where N is the number of particles per unit volume and v is the average volume of each particle. If we divide both sides by A we obtain the mass per unit area m, i.e.

$$m = \rho \times v \times N \times Z$$ \hspace{1cm} (147)$$

This formula can re-expressed in terms of more familiar optical measurements of the volume. First note that the optical depth is related to the β^{ext} by

$$\tau = \beta^{\text{ext}} \times Z$$ \hspace{1cm} (148)$$

so that

$$m = \frac{\rho \times v \times N \times \tau}{\beta^{\text{ext}}}$$ \hspace{1cm} (149)$$

For a given size distribution $n(r)$ the average volume of each particle is

$$v = \frac{\int_0^\infty \frac{4}{3} \pi r^3 n(r) \, dr}{N}$$ \hspace{1cm} (150)$$

so that the mass per unit area is given by

$$m = \frac{\rho \tau}{\beta^{\text{ext}}} \int_0^\infty \frac{4}{3} \pi r^3 n(r) \, dr$$ \hspace{1cm} (151)$$

The important thing to note here is that N disappears explicitly from the equation.

For optical measurement it is more common to know the effective radius rather than the full size distribution. In terms of r_e the mass per unit area is given by

$$m = \frac{4\pi \rho \tau}{3 \beta^{\text{ext}}} \int_0^\infty r^3 n(r) \, dr \times \frac{\int_0^\infty r^2 n(r) \, dr}{\int_0^\infty r n(r) \, dr} = \frac{4\rho \tau}{3 Q^{\text{ext}} r_e}$$ \hspace{1cm} (152)$$
Some Useful Formulae for Particle Size Distributions and Optical Properties

<table>
<thead>
<tr>
<th>Substance</th>
<th>Density (g cm$^{-3}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>Volcanic ash</td>
<td>2.42±0.79</td>
<td>Bayhurst et al. (1994)</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Density of some materials that form aerosols.

which uses an area weighted extinction efficiency

$$
\tilde{Q}^\text{ext} = \frac{\beta^\text{ext}}{\pi} \frac{\beta^\text{ext}}{2} = \frac{\int_0^\infty \sigma^\text{ext} n(r) dr}{\int_0^\infty \pi r^2 n(r) dr} = \frac{\int_0^\infty \pi r^2 n(r) dr}{\int_0^\infty \pi r^2 n(r) dr}
$$

(153)

If the particles with the size distribution are mostly much larger than the wavelength then $Q^\text{ext} \to 2$ and $\tilde{Q}^\text{ext} \approx 2$. With this assumption Equation 143 becomes identical to Equation 152 whose derivation made the same approximation.

If the aerosol size distribution is log-normal with number density N_0, mode radius r_m and spread σ then the integral in Equation 151 can be completed analytically i.e.

$$
m = \frac{\rho \tau}{\beta^\text{ext}} \frac{4}{3} \pi N_0 \rho m^3 \exp \left(\frac{9}{2} \sigma^2 \right)
$$

(154)

Typically ρ is in g cm$^{-3}$, N_0 is in cm$^{-3}$, r_m is in μm, and β^ext is in km$^{-1}$ so that the units of m are

$$
\text{g cm}^{-1} \text{cm}^{-1} \text{km}^{-1} = \frac{\text{g}}{10^{-6} \text{m}^3} \frac{1}{10^{-18} \text{m}^3} 10^3 \text{m} = 10^{-3} \text{g m}^{-2}
$$

(155)

Table 4 list the bulk density of some aerosol components.

If the effective radius, r_e, is known rather than r_m then we can use the relationship between r_e and r_m

$$
r_e = r_m \exp \left(\frac{5}{2} \sigma^2 \right)
$$

(156)

to get

$$
m = 4 \rho \tau \pi N_0 r_e^3 \exp \left(-\frac{15}{2} \sigma^2 \right) \exp \left(\frac{9}{2} \sigma^2 \right) = 4 \rho \tau \pi N_0 r_e^3 \exp \left(-3 \sigma^2 \right).
$$

(157)

Equating this expression to Equation 143 gives

$$
\tilde{Q}^\text{ext} = \frac{\beta^\text{ext}}{\pi N_0 r_e^2} \exp \left(-3 \sigma^2 \right).
$$

(158)
which is true for a log-normal distribution.

For a multi-mode log-normal distribution where the i^{th} model is parameterised by N_i, r_i, σ_i and density ρ_i we have

$$m = \frac{\tau \times \rho \times N \times v}{\beta_{\text{ext}}} = \frac{\tau \sum_{i=1}^{n} \rho_i N_i v_i}{\sum_{i=1}^{n} N_i \bar{\sigma}_{i}^{\text{ext}}}$$

(159)

where $\bar{\sigma}_{i}^{\text{ext}}$ is the extinction cross section per particle for the i^{th} mode. Remember the volume per particle for the i^{th} mode is

$$v_i = \frac{4}{3} \pi r_i^3 \exp \left(\frac{9}{2} \sigma_i^2\right)$$

(160)

Hence

$$m = \frac{\sum_{i=1}^{n} \rho_i N_i \frac{4}{3} \pi r_i^3 \exp \left(\frac{9}{2} \sigma_i^2\right)}{\sum_{i=1}^{n} N_i \bar{\sigma}_{i}^{\text{ext}}}$$

(161)

$$= \frac{4}{3} \pi \tau \frac{\sum_{i=1}^{n} \rho_i N_i r_i^3 \exp \left(\frac{9}{2} \sigma_i^2\right)}{\sum_{i=1}^{n} N_i \bar{\sigma}_{i}^{\text{ext}}}$$

(162)
Some Useful Formulae for Particle Size Distributions and Optical Properties

List of Symbols

\(\mu_0 \) arithmetic mean
\(\mu_g \) geometric mean
\(\sigma_0 \) standard deviation
\(\sigma_g \) geometric standard deviation
\(a \) differential area density distribution
\(a_V \) surface area density
\(l \) natural log of radius
\(m \) differential mass density distribution
\(m_i \) \(i \)th moment of a distribution
\(n \) differential radius number density distribution
\(N_0 \) number of particles per unit volume
\(r \) radius
\(r_e \) effective radius
\(r_m \) median radius
\(r_M \) mode radius
\(v \) differential volume density distribution
\(v_e \) effective variance
\(v_V \) volume density
Some Useful Formulae for Particle Size Distributions and Optical Properties

References

Index

asymmetry parameter, 27
central moment, 3
cloud liquid water path, 30
effective radius, 3
effective variance, 3
gamma distribution, 20
geometric mean, 2
geometric standard deviation, 2
geometric variance, 2
inverse modified gamma distribution, 22
logarithmic normal distribution, 5
mean, 2
median, 2
mode, 2
modified gamma distribution, 18
moment, 3
normal distribution, 5
phase function, 27
raw moment, 3
regularized power law, 23
single scatter albedo, 27
size distribution, 1
standard deviation, 2
variance, 2
volume absorption coefficient, 26
volume extinction coefficient, 26
volume scattering coefficient, 26