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Radiometric Basics

The representation of a light beam as an electromagnetic wave or a collection of

photons is very useful in understanding the way light interacts with matter. However,

in describing light in the atmosphere we are principally concerned with the flow of

energy. This section introduces the terms and concepts used in such a radiometric

description.

3.1 Solid Angle

A plane angle (α) is the ratio of the length of an arc (c) to the radius of the arc (r).

In an analogous way the solid angle ω is the ratio of an area A to the square of the

radius of a sphere. The shape of the area does not matter. This is shown in Figure 3.1.

Hence solid angle is a measure of the angular size in two dimensions of an object.

FIGURE 3.1

Definition of plane angle and solid angle.
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FIGURE 3.2

Definition of azimuth angle, φ, zenith angle, θ, (this direction pair is abbreviated as

ω) and differential solid angle dω.

Figure 3.2 defines the azimuth angle, φ, and zenith angle, θ, used to specify di-

rection. In many cases the flow of energy is found by summing the contribution of

many rays crossing a surface travelling in different directions. Therefore it is worth

noting the standard integral results found using this notation,

+z hemisphere

∫ 2π

0

∫ π
2

0

sin θ dθ dφ = 2π (3.1)

−z hemisphere

∫ 2π

0

∫ π

π
2

sin θ dθ dφ = 2π (3.2)

sphere

∫ 2π

0

∫ π

0

sin θ dθ dφ = 4π (3.3)

projected hemisphere

∫ 2π

0

∫ π
2

0

cos θ sin θ dθ dφ = π (3.4)

where the terms +z hemisphere and −z hemisphere have been introduced to describe

the set of directions where θ is in the range [0, π/2] or [π/2, π] respectively. At

times it is convenient to make the substitution µ = cos θ and use µ instead of θ as a

coordinate. Alternatively, equations are simplified by abbreviating the direction pair

(θ, φ) as the vector ω.

Now consider the area, dA, created by differential changes in the angular coordi-

nates, i.e.

dA = rdθ × sin θ dφ. (3.5)

The differential solid angle, dω, is formed by dividing by r2 i.e

dω =
dA

r2
= sin θdθ dφ. (3.6)

Rather than integrate over θ and φ the differential solid angle can be used as a short-

hand notation for integration over solid angle. So, for example, for some function

f (θ, φ), f (µ, φ) or f (ω) equivalent integral expression are
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+z hemisphere integration

∫ 2π

0

∫ π
2

0

f (θ, φ) sin θ dθ dφ =

∫ 2π

0

∫ 1

0

f (µ, φ) dµ dφ =

∫ 2π

0

f (ω) dω, (3.7)

−z hemisphere integration

∫ 2π

0

∫ π

π
2

f (θ, φ) sin θ dθ dφ =

∫ 2π

0

∫ 0

−1

f (µ, φ) dµ dφ =

∫ −2π

0

f (ω) dω, (3.8)

spherical integration

∫ 2π

0

∫ π

0

f (θ, φ) sin θ dθ dφ =

∫ 2π

0

∫ 1

−1

f (µ, φ) dµ dφ =

∫ 4π

0

f (ω) dω, (3.9)

where the limits of the differential solid angle integral are given as 2π for the +z

hemisphere, −2π for the −z hemisphere, and 4π for the integral over a sphere. When

using this notation care should be taken to distinguish the direction vector ω from

the differential solid angle dω.

3.2 Radiant Quantities

The radiant energy, Q, is the energy emitted, transferred or received by electromag-

netic waves. The flow of radiant energy is generally achieved by a large numbers of

photons and described by four fundamental terms [ISO, 1992]

• Radiant flux, Φ,

• Irradiance, E,

• Radiant intensity I,

• Radiance, L.

The French led the naming and development of radiometric standards so symbols for

the last three quantities, which seem anomalous to the English speaker, are derived

from eclairage (E), intensité (I) and luminosité (L). Before defining and discussing

these terms it should be noted that:

• All wavelengths contribute to radiant energy but the radiant energy, and terms

describing its transport, can also be specified over a defined range of wave-

lengths.

• The point or surface where radiometric quantity is evaluated may be real or it

may be imagined.



46 An Atmospheric Radiative Transfer Primer

3.2.1 Radiant flux, Φ

The flow of radiant energy is encapsulated in the concept of radiant flux, Φ, defined

as the rate at which radiant energy is transferred from a surface or point to another

point or surface, i.e.

Φ =
∂Q

∂t
, (3.10)

where t is time.

3.2.2 Radiant Flux Density, M or E

The radiant flux density is a flow of energy per unit area, i.e.

M or E =
∂Φ

∂A
. (3.11)

The radiant flux density is separated into radiant exitance from a surface M, and

irradiance (or incidence) onto a surface E. However this terminology is only loosely

respected with irradiance used for both incident and leaving radiation. One reason

is that the distinction is not particularly useful for an imaginary surface where the

irradiance onto the surface is identical to the exitance from the reverse of the surface.

 

E
0

E
0
cos 

FIGURE 3.3

A collimated beam shining on a surface.

As an example of the use of irradiance to describe energy flow consider a colli-

mated beam which near its axis can be considered a plane wave. If such a collimated

beam is shining on a plane at an angle θ to the normal as shown in Figure 3.3 then the

collimated beam illuminates an area sec θ larger than the cross-section of the beam.

Hence if the irradiance of the beam is E0 (measured on the plane orthogonal to the

direction of propagation) then the irradiance on the surface is E0 cos θ.

3.2.3 Radiant intensity, I

Now consider the energy flow at two points d1 and d2 from a point light source

generating a spherical electromagnetic wave as shown in Figure 3.4. If we consider
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A1
A2

d1

d2

O

FIGURE 3.4

Element of a spherical wave generated at the origin, O. The two areas of interest A1

and A2 located at d1 and d2 respectively contain the same solid angle when observed

from O.

an element of solid angle we know the rate of energy flow through each surface A1

and A2 is the same i.e.

Φ1 = Φ2. (3.12)

However as the area over which this energy is spread changes the radiant flux density

is no longer invariant. However the solid angle of each surface seen from the point

source is the same. The invariant quantity is the radiant intensity, I(ω), defined as

the radiant flux per unit solid angle travelling in direction (ω), i.e.

I(ω) =
∂Φ

∂ω
. (3.13)

The average radiant intensity leaving a point, Ī, is the radiated power divided by

4π, i.e.

Ī =
1

4π

∫ 4π

0

I(ω) dω. (3.14)

3.2.4 Radiance, L

 !

 "

dS!

dS"

r

dS!cos !

dS"cos "

r

(a) (b)

FIGURE 3.5

a) Two optical elements dS 1 and dS 2 separated by a distance r and having angles

θ1 and θ2 between the normal to each area and the line joining the centres of the

areas. b) When the areas are rotated to align their normals with the line joining their

centres.
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Generally light is not collimated nor does it originate from a point source. When

the source has a measurable area it is termed an extended source . Consider two

elemental areas dS 1 and dS 2 separated by a distance r and having angles θ1 and θ2

between the normal to each area and the line joining the centres of the areas. The

medium between the areas is defined to be transparent. This construction is shown

in Figure 3.5. The first area presents an effective area dS 1 cos θ1 towards dS 2 while

the second area has a solid angle of dS 2 cos θ2/r
2 when viewed from S 1. Conversely

dS 2 presents an effective area dS 2 cos θ2 towards dS 1 while the first area has a solid

angle of dS 1 cos θ1/r
2 when viewed from S 2. The product of the effective area and

solid angle from either component is the same i.e.

dG2 = dS 1 cos θ1

dS 2 cos θ2

r2
= dS 2 cos θ2

dS 1 cos θ1

r2
(3.15)

This term, dG2 is called the étendue and represents the geometric linkage between

two optical elements. If the intervening media involves a change in refractive index

then a further n2 term is included in the definition of étendue [e.g. see Brooker,

2003]. As the étendue is conserved through an optical system it is often called the

throughput. In many optical system the surface normals are aligned with r so that

the étendue is defined as the product of the surface area and the observed solid angle

i.e.

dG2
normally aligned = dS 1

dS 2

r2
= dS 2

dS 1

r2
(3.16)

dA d 
!

FIGURE 3.6

Radiance defined as the rate of energy leaving a surface element dA cos θ in a direc-

tion θ (relative to the surface normal) per solid angle.

This concept of étendue leads to the definition of radiance, L, which is the rate

of energy propagation in a given direction per unit solid angle per unit area perpen-

dicular to the axis of the solid angle. This is shown in Figure 3.6. Radiance is the

derivative of the radiative flux with respect to étendue

L =
∂2Φ

∂G2
=

∂2Φ

∂ω (cos θ ∂A)
, (3.17)

where ∂A is the elemental area containing the point and dω = sin θ dθdφ is the

differential solid angle centred about (θ, φ), the direction of travel of the ray. Note

that a local coordinate system used to define radiance. In this system the z axis is

aligned with the normal to the surface from which the ray is leaving. This ensures
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θ is always in the range [0, π/2]. Note that when θ = π/2 the ray carries no energy

from the evaluating surface so the radiance is zero. In everyday terms the radiance

can be interpreted as the brightness of an object. The product of the radiance and

étendue is the power received by an optical system. As the eye can be approximated

as an optical device with a fixed étendue, the power received by the eye is a linear

function of observed radiance.

3.2.5 Spectral and Measurable Quantities

The term spectral is applied to radiometric quantities to denote spectral density. For

instance the spectral radiant flux, Φλ(λ) is defined so that Φλ(λ)dλ, is the radiant

energy per unit time within the interval λ and λ + dλ. The spectral density can also

be expressed in terms of wavenumber or frequency. The subscript λ, ν̃ or ν is added to

a term to denote the spectral density with respect to either wavelength, wavenumber

or frequency. The radiant flux can be expressed in terms of the spectral radiant flux

by

Φ =

∫ ∞

0

Φλ(λ) dλ =

∫ ∞

0

Φν̃(ν̃) dν̃ =

∫ ∞

0

Φν(ν) dν. (3.18)

It should be realised that spectral quantities are infinitesimal and can never be mea-

sured. What can be measured is the energy within some range of wavelengths. For

example a red filter restricts the energy observed to that with wavelengths between

approximately 630 to 740 nm. Such a range is called a waveband or band and is

defined by the upper and lower band limits, labelled here λ1 and λ2 respectively. The

symbol ∆λ, is used to indicate that a finite range of wavelengths is being considered.

For example the waveband radiant flux density is given by

E(∆λ) =

∫ λ2

λ1

Eλ(λ) dλ (3.19)

It is also not possible to measure any radiometric quantity that is a derivative

respect to solid angle as all detectors have a finite size. Instead the qualifier conical

is used to denote a radiant quantity integrated over a small but finite solid angle.

Such a range is defined by the upper and lower band limits, labelled here ω1 and ω2

respectively. For example the waveband conical radiance is given by

L(∆λ,∆ω) =

∫ λ2

λ1

∫
ω2

ω1

Lλ(λ,ω) dω dλ (3.20)

Often the variation of the radiant quantity is negligible so that the integrals can be

completed. For example

L(∆λ,∆ω) = (λ2 − λ1)(ω2 − ω1)Lλ(λ,ω) (3.21)

where the value of spectral radiance comes from somewhere in the band and cone of

interest.
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TABLE 3.1

Radiometric Quantities

Name Symbol Common Unit
Radiant Energy Q J

Spectral Radiant Energy Qλ J µm−1

Qν̃ J (cm−1)−1

Radiant Flux Φ W

Spectral Radiant Flux Φλ W µm−1

Φν̃ W (cm−1)−1

Radiant Flux Density

Irradiance E W m−2

Exitance M W m−2

Spectral Radiant Flux Density

Incidence/Irradiance Eλ W m−2 µm−1

Eν̃ W m−2 (cm−1)−1

Exitance Mλ W m−2 µm−1

Mν̃ W m−2 (cm−1)−1

Radiant Intensity I W sr−1

Spectral Radiant Intensity Iλ W µm−1 sr−1

Iν̃ W (cm−1)−1 sr−1

Radiance L W m−2 sr−1

Spectral Radiance Lλ W m−2 µm−1 sr−1

Lν̃ W m−2 (cm−1)−1 sr−1

Note that as wavenumbers are often expressed in cm−1 then the spectral dependence

is usually shown as (cm−1)−1.

Table 3.1 summarizes some of the radiometric quantities that have been intro-

duced and units usually used. It is worth concluding with the caveat that the use of

radiometric symbols between and within science disciplines is often contradictory.

To quote Wolfe [1998]

Although radiometric terms can be used, misused, and abused in a num-

ber of ways, intensity may be the worst.

To illustrate this example one just has to note that undergraduate optics texts typically

use intensity to mean the flux density, while in astronomy it is the accepted term for

what is defined here as radiance.

3.2.6 Relating Radiance and Irradiance

Consider a coordinate system with the z axis is aligned with the direction of propa-

gation of ray of radiance L. The exitance from the x − y plane is E = L dω. More

generally if x − y plane of coordinate system is defined by a surface element dA. As

shown in Figure 3.7 the polar angle θ is defined with respect to the upward pointing

normal from the elemental surface area dA of interest. The exitance from the surface
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FIGURE 3.7

Geometry defined by a surface element dA.

element can be expressed in terms of the radiance of each incident ray by

dM = L(ω) cos θ dω (3.22)

The integral of all the rays where θ > π/2 leaving the surface element gives the

radiant exitance in the positive z direction M(2π)

M(+2π) =

∫ 2π

0

L(ω) cos θ dω (3.23)

This is shown graphically in Figure 3.8.

FIGURE 3.8

Graphical representation of the construction of radiant exitance from a radiance field.

A radiance field at some location is represented by L(ω) where ω is the direction

in which the ray is travelling. At this location we can define an equivalent radiant

exitance from an elemental surface. The radiant flux density in the +z direction (i.e.

where θ = 0), M̂, is given by the spherical integral of the radiance leaving the surface

M̂ =

∫ 2π

0

L(ω) cos θ dω. (3.24)
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The fact that this expression gives the exitance in the +z direction and not the sum

of the exitance leaving the surface from above and below may, at first instance, seem

surprising. The reason is the cos θ term changes sign for rays where θ > π/2. Al-

though useful in this context, the change of sign has an unfortunate side-effect when

calculating the irradiance from the radiance field for rays where θ > π/2. In this case

the integral
∫ 2π

0

L(ω) cos θ dω (3.25)

gives a negative answer i.e. the flow of energy is in the −z direction. While math-

ematically exact a negative energy flow is not a helpful concept. To avoid this the

differential projected solid angle dΩ is defined as

dΩ = | cos θ| dω. (3.26)

The absolute value of cos θ prevents dΩ being negative for rays travelling in direc-

tions where θ lies in the range π/2 to π. Using this notation the radiant exitance in

the +z direction is

M(+2π) =

∫ 2π

0

∫ π
2

0

L(θ, φ) cos θ sin θ dθ dφ =

∫ 2π

0

L(ω) dΩ. (3.27)

whereas the radiant exitance in the +z direction, M(−2π), is

M(−2π) =

∫ 2π

0

∫ π

π
2

L(θ, φ)| cos θ| sin θ dθ dφ =

∫ −2π

0

L(ω) dΩ. (3.28)

For an imaginary surface the irradiance on one side of the surface must be identical

to the exitance from the other side of the surface. This is shown in Figure 3.9 and

can be represented mathematically as

E(+2π) ≡ M(+2π) and E(−2π) ≡ M(−2π) (3.29)

where E(+2π) and E(−2π) represent the irradiance travelling in the +z and −z direc-

tions respectively. Using these equivalences gives the irradiance on the x-y plane in

the +z direction, as

E(+2π) =

∫ 2π

0

L(ω) dΩ. (3.30)

Similarly the irradiance on the x-y plane in the −z direction, as

E(−2π) =

∫ −2π

0

L(ω) dΩ. (3.31)

Now consider a collimated beam travelling in direction ω. The term E(ω) is used

to represent the irradiance from a collimated beam incident on a plane orthogonal to

ω. Using this notation the relationship between a collimated beam and the irradiance

generated on the x-y plane is

for a collimated beam:
E(+2π) = E(ω) cos θ 0 < θ < π/2

E(−2π) = E(ω)| cos θ| π/2 < θ < π
. (3.32)



Radiometric Basics 53

FIGURE 3.9

Graphical representation of the construction of the irradiance or exitance from a

radiance field.

When the radiance is the same in all directions (i.e. isotropic) the integrations in

Equations 3.30 and 3.31 can be performed, so the relationship between radiance and

irradiance is

isotropic only:
E(+2π) = πL(ω) 0 < θ < π/2

E(−2π) = πL(ω) π/2 < θ < π
(3.33)

where E(+2π) and E(−2π) have been used to show the irradiance is formed from a

diffuse isotropic field. The irradiance terms that have been introduced are listed in

Table 3.2.

TABLE 3.2

Directionality of Irradiance

Symbol Description
E(ω) the irradiance caused by a unidirectional beam on the plane orthogonal

to the ω direction.
E(+2π) the irradiance on the x-y plane in the +z direction.
E(−2π) the irradiance on the x-y plane in the −z direction.

E(+2π) the irradiance on the x-y plane in the +z direction caused by an isotropic

diffuse radiance field.

E(−2π) the irradiance on the x-y plane in the −z direction caused by an isotropic

diffuse radiance field.

In the atmosphere the solar irradiance, ESun(ω0), is often treated as a unidirectional
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beam travelling in direction ω0 ≡ (θ0, φ0). This is equivalent to a radiance field

described by

L(ω) = δ(ω − ω0)ESun(ω0) (3.34)

where δ is a version of the Dirac delta function and has the following properties

δ(ω) =

{

∞ ω = 0

0 ω , 0
(3.35)

∫ 2π

0

δ(ω) dω =

∫ −2π

0

δ(ω) dω = 1 (3.36)

Substituting Equation 3.34 into Equation 3.31 gives the expected result for the solar

irradiance on a horizontal surface in the absence of an atmospheric which is

∫ −2π

0

δ(ω − ω0)ESun(ω0) dΩ = cos θ0ESun(ω0). (3.37)

3.2.7 Relationships between Electromagnetic and Radiometric Quan-
tities

The radiant flux density is a flow of energy per unit area, i.e.

M or E =
∂Φ

∂A
= 〈S 〉. (3.38)

The magnitude of the radiant flux density is the magnitude of the time averaged

Poynting vector, 〈S 〉, which was defined in Equation 2.98. For a plane harmonic

wave the relationship is

E =
1

2
ǫ0cE2

0. (3.39)

The power per unit steradian (i.e. the radiometric intensity) for a spherical har-

monic wave is

I = 〈S〉r2 =
1

2
ǫ0cE2

0d2, [W sr−1] (3.40)

where d is the distance from the point source.

The electromagnetic and radiometric descriptions of light can be connected through

the concept of spectral energy density introduced in Section 2.5. Recall that the spec-

tral energy density uν is the energy per unit volume in the frequency range from ν to

ν + dν. To relate the energy density to radiometric quantities we consider two cases:

For a collimated beam of cross-section A all the energy in a layer ct thick will

cross A in time t. This can be equated to the radiant power by

Φνt = uνAct (3.41)

Dividing by the area gives the spectral irradiance in terms of spectral energy density

Eν = uνc (3.42)
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If the radiation field is isotropic then the flow of radiant power is the same in all

directions. The spectral radiance is found by multiplying the spectral energy density

by the velocity of flow c and dividing by 4π, i.e.

Lν(ν) =
uν × c

4π
(3.43)

3.3 Blackbody Radiation

Electromagnetic radiation generated by the thermal motion of charged particles in

matter. All matter with a temperature greater than absolute zero emits thermal radi-

ation. A black body is an idealized physical body that absorbs all incident electro-

magnetic radiation. Because of this perfect absorptivity at all wavelengths, a black

body is also the best possible emitter of thermal radiation.

3.3.1 Planck Function

The standard method for developing the spectral distribution of light emitted from

a body is to consider a cubical cavity of side length l where the walls are at a fixed

temperature and the radiation within the enclosure is in equilibrium.

The standing waves that are possible with in the cavity must have discrete wave-

lengths so that at the walls (x = 0 & x = l), the amplitude of the wave is zero. If

the wave is normal to a wall then non-zero amplitudes can only occur for waves that

have discrete wavelengths such that

nλ

2
= l, (3.44)

where n = 1, 2, 3, . . .. If the wave is in some arbitrary direction whose direction

normal makes angles α, β, γ with the x, y and z axes then the valid wavelengths are

defined by
nxλ

2
= l cosα,

nyλ

2
= l cos β,

nzλ

2
= l cos γ, (3.45)

where nx, ny and nz define the number of half wavelengths in the x, y and z directions

respectively. Squaring and summing these equations gives

n2
x + n2

y + n2
z =

(

2l

λ

)2 (

cos2 α + cos2 β + cos2 γ
)

. (3.46)

From Pythagoras cos2 α + cos2 β + cos2 γ = 1 so

n2
x + n2

y + n2
z =

(

2l

λ

)2

. (3.47)
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Rearranging this equation gives the permitted frequencies of the standing waves as

ν =
√

n2
x + n2

y + n2
z

c

2l
, (3.48)

for all positive integers nx, ny and nz. It is helpful to introduce the radial coordinate

r defined by

r2 = n2
x + n2

y + n2
z , (3.49)

so

ν =
rc

2l
. (3.50)

FIGURE 3.10

A view of the x-y plane of a space whose axes are nx, ny and nz where each mode is

represented by a dot.

The number of modes having frequencies in the range ν to ν+dν can be calculated

by considering the space whose axes are nx, ny and nz. A slice through this space is

shown in Figure 3.10. The density of nodes in this space is unity so that the number

of nodes per unit radius Nr is the volume defined by a differential spherical octant

shell, i.e.

Nr(r)dr =
4πr2dr

8
. (3.51)

The number of nodes per unit frequency is then

Nν(ν) = Nr(r)
dr

dν
= 2 × 4πr2

8
× 2l

c
, (3.52)
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where the factor of two accounts for the fact that radiation may have two different

states of polarization. Combining with Equation 3.50 gives

Nν(ν) = π
8l3ν2

c3
. (3.53)

In accordance with Boltzmann statistics, the number of oscillators Nn in any given

energy state, is a related to the energy of that state En through

Nn ∝ e−En/kBT . (3.54)

The mean energy per oscillator, Ē, is given by

Ē =

∫ ∞
n=0

Ee−E/kBT dE
∫ ∞

n=0
e−En/kBT dE

= kBT. (3.55)

Hence, according to the classical Boltzmann Law each mode has an average energy

of kBT .

The spectral energy density, uν in the frequency range ν to ν + dν is then the total

energy of all modes in that frequency range divided by the volume of the cavity, i.e.

uν(T )dν =
Nν(ν)

l3
kBT = 8πkBT

ν2

c3
(3.56)

Using the relation between energy density and radiance (Equation 3.43)

Lλ(λ) =
2kBTν2

c2
=

8πkBT

λ4
. (3.57)

This is know as the Rayleigh - Jeans law and it agrees well with experiment for long

wavelengths. As the radiance was proportion to λ−4 it increases without limit as the

wavelength decreased. This was known as the ultraviolet catastrophe.

In 1905 Planck introduced the quantum hypothesis and this solved the difficulty.

Planck’s first postulate stated that the possible energies of a mode of vibration are

quantised as 0, hν, 2hν, 3hν, . . ., where ν is the frequency. Then the mean energy per

oscillator, Ē, is given by

Ē =

∑∞
n=0 Ene−En/kBT

∑∞
n=0 e−En/kBT

=

∑∞
n=0 nhνe−nhν/kBT

∑∞
n=0 e−nhν/kBT

=
hν

e−hν/kBT − 1
. (3.58)

Using this expression instead of kBT in Equation 3.57 gives

Bν(ν,T ) =
2hν3

c2

(

e
hν

kBT − 1

) , (3.59)

which is known as Planck’s radiation law or the Planck function. This law can also

be expressed in terms of wavenumber

Bν̃(ν̃,T ) =
2hc2ν̃3

(

e
hcν̃
kBT − 1

) , (3.60)
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TABLE 3.3

Planck function and related constants.

Expression Bλ(λ,T ) = c1

λ5(ec2/λT−1)
Bν̃(ν̃,T ) = c1 ν̃

3

(ec2 ν̃/T−1)

Units W m−2 µm−1 sr−1 W m−2 (cm−1)−1 sr−1

c1 1.191043 × 108 W m−2 µm4 1.191043 × 10−8 W m−2 (cm−1)−4

c2 1.4387769 × 104 µm K 1.4387769 cm K

or wavelength

Bλ(λ,T ) =
2hc2

λ5

(

e
hc

kBλT − 1

) , (3.61)

The constants used in calculating the Planck function are given in Table 3.3.
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FIGURE 3.11

The solid lines are the Planck curves for black bodies at the temperatures given near

the curve peaks. The dashed line is the maximum value of the Planck function deter-

mined from Wein’s Law.
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The Planck function at several temperatures is shown in Figure 3.11 for both

Bν̃(ν̃,T ) and Bλ(λ,T ). The energy given off by a black body increases temperature

for all wavelengths or wavenumbers. As the temperature increases the spectral value

where the Planck function peaks decreases for Bν̃(ν̃,T ) and increases for Bλ(λ,T ).

The value of λmax is found by identifying where
dBλ(λ;T )

dλ
= 0. The derivative is

dBλ(λ; T )

dλ
= 2hc2





hc
kBλ2T

e
hc

kBλT

λ5

(

e
hc

kBλT − 1

)2
− 5

λ6(e
hc

kBλT − 1)





,

giving

hc

kBλT

(

1 − e
− hc

kBλT

) − 5 = 0.

Defining x ≡ hc
kBλT

gives
x

1 − e−x
− 5 = 0,

which can be solved numerically to give x = 4.965. Hence

λmax =
2898

T
,

where λmax is in microns and T is in Kelvin. This expression is known as Wein’s

Displacement Law. The maxima of Bν̃(ν̃,T ) does not correspond to a maxima in

Bλ(λ,T ). A similar derivation gives the wavenumber ν̃max at which the Planck func-

tion, Bν̃(ν̃,T ), peaks as

ν̃max = 0.5198T.

3.3.2 Stefan-Boltzmann Law

Blackbody radiation is isotropic, so the radiant exitance from a blackbody, Mb, is

calculated from the Planck function as follows:

Mb(+2π,T ) =

∫ 2π

0

∫ ∞

0

2hc2

λ5

(

e
hc

kBλT − 1

) dλ dΩ = π

∫ ∞

0

2hc2

λ5

(

e
hc

kBλT − 1

) dλ. (3.62)

Now making the substitution x ≡ hc/kBλT

Mb(+2π,T ) =
2πk4

B
T 4

h3c2

∫ ∞

0

x3

(ex − 1)
dx. (3.63)

The value of the integral is π4/15 so

Mb(+2π,T ) =
2π5k4

B

15h3c2
T 4, (3.64)
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which is usually written as

Mb(+2π,T ) = σT 4, (3.65)

and known as the Stefan-Boltzmann law where σ is the Stefan-Boltzmann constant:

σ =
2π5k4

B

15h3c2
= 5.670 × 108 W m−2 K−4. (3.66)

The radiance from a black body is

Lb(ω,T ) =
σT 4

π
. (3.67)

A black body at the typical temperature of the Earth has a peak emission at 10 µm,

while a blackbody at 6700 K (typical of the Sun’s outer atmosphere) has a peak

wavelength of 0.55 µm.

3.3.3 Emission

The emissivity of an object is the ratio of the radiant energy from a body at tempera-

ture T to the radiant energy that would be emitted by a perfect blackbody. However

this ratio can be expressed in nine different ways based on geometry (directional,

conical and hemispherical) and on spectral range (spectral, total and weighted aver-

age). Each emissivity term is found from the ratio of the emitted energy integrated

over wavelength and/or direction to the equivalent blackbody value. These defini-

tions are shown in Table 3.4. In naming each of the terms the spectral qualifier comes

before the directional qualifier so that ǫ(λ,ω) is the spectral directional emissivity,

ǫ(λ, 2π) is the spectral hemispherical emissivity etc.

When the spectral directional emissivity ǫ(λ,ω) is constant then the emitted radi-

ation is a scaled version of that from a blackbody. An emitter with this property is

called a grey body. A coloured body is one where the spectral directional emissivity

varies with wavelength.

3.3.4 Brightness temperature

The Planck function can be inverted so that temperature can be expressed as a func-

tion of spectral radiance, i.e.

TB =
hc

kBλ ln
(

2hc2

λ5Bλ(T )
+ 1

) , (3.68)

or

The temperature so calculated is usually referred to as the brightness temperature.

There is no analytical inversion expression for an instrument whose measurement

is over a waveband. The brightness temperature in this case is the temperature that

gives the measured integrated radiance, Lmeasured, i.e.

Lmeasured =

∫ λ2

λ1

φ(λ)Bλ(λ,TB) dλ, (3.69)
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TABLE 3.4

Summary of emissivity terms.

Directional ǫ(λ,ω) =
Lλ(λ,ω)

Bλ(λ,T )

Spectral Conical ǫ(λ,∆ω) =

∫ ω2
ω1

Lλ(λ,ω) dΩ
∫ ω2
ω1

Bλ(λ,T ) dΩ
=

Mλ(λ,∆ω)

Mb
λ(λ,T,∆ω)

Hemispherical ǫ(λ, 2π) =

∫ 2π

0
Lλ(λ,ω) dΩ

∫ 2π

0
Bλ(λ,T ) dΩ

=
Mλ(λ,2π)

Mb
λ(λ,T,2π)

Directional ǫ(∆λ,ω) =

∫ λ2
λ1

Lλ(λ,ω) dλ
∫ λ2
λ1

Bλ(λ,T ) dλ
=

L(∆λ,ω)

Lb(∆λ,T )

Band Conical ǫ(∆λ,∆ω) =

∫ λ2
λ1

∫ ω2
ω1

Lλ(λ,ω) dΩ dλ
∫ λ2
λ1

∫ ω2
ω1

Bλ(λ,T ) dΩ dλ
=

M(∆λ,∆ω)

Mb(∆λ,T,∆ω)

Hemispherical ǫ(∆λ, 2π) =

∫ λ2
λ1

∫ 2π

0
Lλ(λ,ω) dΩ dλ

∫ λ2
λ1

∫ 2π

0
Bλ(λ,T ) dΩ dλ

=
M(∆λ,2π)

Mb(∆λ,T,2π)

Directional ǫ(ω) =

∫ ∞
0

Lλ(λ,ω) dλ
∫ ∞

0
Bλ(λ,T ) dλ

=
L(ω)

Lb

Total Conical ǫ(∆ω) =

∫ ∞
0

∫ ω2
ω1

Lλ(λ,ω) dΩ dλ
∫ ∞

0

∫ ω2
ω1

Bλ(λ,T ) dΩ dλ
=

M(∆ω)

Mb(T,∆ω)

Hemispherical ǫ(2π) =

∫ ∞
0

∫ 2π

0
Lλ(λ,ω) dΩ dλ

∫ ∞
0

∫ 2π

0
Bλ(λ,T ) dΩ dλ

=
M(2π)

Mb(T,2π)

where φ(λ) is the instrument response function with limits λ1 and λ2 such that

∫ λ2

λ1

φ(λ) dλ = 1.

3.4 Transfer of Energy

When radiation is incident upon a layer three processes can occur: absorption, re-

flection or transmission. The fraction of incident radiant flux Φi absorbed, reflected

and transmitted is described by the absorptance

A = Φ
a

Φi
(3.70)

reflectance

R = Φ
r

Φi
(3.71)

and transmittance

T = Φ
t

Φi
(3.72)
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FIGURE 3.12

At an interface (a) radiant flux is either reflected or transmitted where as a layer (b)

can reflect, transmit or absorb radiant flux.

where Φa is the flux absorbed and Φr, Φt are the radiant flux due to reflection and

transmission respectively. The three terms defined above are dimensionless quanti-

ties each of whose values must lie in the interval [0,1]. Reflection and transmission

have already been described for an interface between substances of differing refrac-

tive index. For a layer the reflectance or transmittance is the describes the distribution

of reflected or transmitted light at the layer boundaries which is the cumulative result

of redirection of light within the layer by scattering.

The absorbed, reflected and transmitted flux is related to the incident flux by

Φi = Φa + Φr + Φt (3.73)

so that

1 = A + R + T (3.74)

represents the conservation of radiant power. Similar expressions can be formed for

monochromatic radiation as long as the processes do not alter the wavelength of light

(e.g. through fluorescence).

3.5 Absorption

Absorption is the process where radiant energy is removed from the electromagnetic

field and converted to some other form of energy e.g. an increase in molecular kinetic

energy, a change in atomic excitation or conversion to chemical potential energy

through photolysis. Absorption is the complementary process to emission and the

two are related by Kirchhoff’s Law which can be stated:

At thermal equilibrium, the emissivity of a body (or surface) equals its

absorptivity.
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TABLE 3.5

Summary of absorbtivity terms.

Directional α(λ,ω)
Spectral Conical α(λ,∆ω)

Hemispherical α(λ, 2π)

Directional α(∆λ,ω)
Band Conical α(∆λ,∆ω)

Hemispherical α(∆λ, 2π)

Directional α(ω)
Total Conical α(∆ω)

Hemispherical α(2π)

To understand this process consider placing an opaque object with spectral hemi-

spherical emissivity ǫ(λ, 2π) in an evacuated cavity and allowing the system to reach

radiative equilibrium. For this condition to be true the same radiative energy must

flow away from the object as impinges on it. The object must be at the same temper-

ature as the walls of the cavity otherwise a system could be constructed that would

violate the 2nd law of thermodynamics (i.e. energy would be flowing from a cold

object to a hot object). If the walls of the cavity act as a perfect blackbody at tem-

perature T then the amount of irradiance incident on an elemental area of the object

would be πBλ(λ,T ). If α(λ, 2π) of the incident radiance is absorbed then by conser-

vation of energy ρ(λ, 2π) = 1 − α(λ, 2π) of the incident irradiance must be reflected

away from the object. For radiative balance

πBλ(λ,T ) = ǫ(λ, 2π)πBλ(λ,T ) + ρ(λ, 2π)πBλ(λ,T ) (3.75)

1 = ǫ(λ, 2π) + (1 − α(λ, 2π)) (3.76)

α(λ, 2π) = ǫ(λ, 2π) (3.77)

A similar but slight more complex argument can be invoked to show that the spec-

tral directional absorptivity has the same value as the spectral directional emissivity

i.e. α(λ,ω) = ǫ(λ,ω) (see Problem 3.5). Given this fact it follows that Kirchhoff’s

Law can be used to define the equivalence between the absorptivity terms given in

Table 3.5 and the emissivity terms given in Table 3.4.

3.6 Reflection

Reflection deals with the redirection of radiant power at a surface. However as the

incident or reflected radiant power can be localised to a particular angle, solid angle

or hemisphere there are a large number of reflection terms. Three particular modes

of illumination are of particular interest:
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• The diffuse mode where the light illuminating a surface varies as a function of

input direction, ωi and is described by the spectral radiance field Li
λ(ωi). This

is the general case.

• The isotropic mode where the light illuminating a surface is perfectly diffuse

i.e. Li
λ(ωi) is the same for all ωi. In this case the radiance is related to the

downward irradiance through E(−2π) = πLi
λ(ωi)

• The unidirectional mode where the incident light is a spectral irradiance Ei
λ(ωi)

from a single direction ωi. This is typical of the solar beam illuminating a sur-

face.

In the rest of this book the words isotropic or unidirectional have been placed along-

side formula that have been determined assuming that mode of illumination.

3.6.1 Angular Distribution of Reflection

FIGURE 3.13

Reflection geometry.

Consider the reflection of radiation by a surface element dA illuminated by a sin-

gle small source. The source radiance is Li and it subtends a solid angle dωi =

sin θi dθi dφi at dA. The spherical coordinates are orientated so that θ is the angle

from the normal to dA and φ is the angle in the plane of dA from some arbitrary ref-

erence direction. This geometry is shown in Figure 3.13. The radiant power incident

on dA from the source is

dΦi
λ = Li

λ cos θi dA sin θi dθi dφi = Li
λ cos θi dA dωi = Li

λ dA dΩi (3.78)

which is just a rewriting of Equation 3.17 which defines radiance. Any energy that

is not transmitted or absorbed is reflected into the hemisphere above dA so that if a
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small receiver is placed where it subtends a solid angle dωr = sin θr dθr dφr at dA

then the radiation intercepted by the receiver is

dΦr
λ = Lr

λ cos θr dA sin θr dθr dφr = Lr
λ cos θr dA dωr = Lr

λ dA dΩr (3.79)

The radiant reflectance f ∗(ωi,ωr) for this geometry is then

f ∗(ωi,ωr) =
dΦr

λ

dΦi
λ

=
Lr
λdAdΩr

Li
λdAdΩi

=
Lr
λdΩr

Li
λdΩi

(3.80)

which can be rewritten as

Lr
λdΩr = f ∗(ωi,ωr)L

i
λdΩi. (3.81)

From this expression one can see that f ∗(ωi,ωr) takes the radiant power at dA due

to Li
λ and redirects it into direction ωr. It is also worth noting the symmetry in this

expression so that reflection is a reciprocal process and the same result would be

obtained with the source and receiver interchanged.

Equation 3.81 has a limited applicability as it requires knowledge of the differ-

ential solid angle of reflection. By defining the bidirectional reflectance distribution

function (BRDF) f r(ωi,ωr) as the radiant reflectance per reflected projected solid

angle, i.e.

f r(ωi,ωr) =
d f ∗

dΩr

=
Lr
λ

Li
λdΩi

=
Lr
λ

Ei
λ(−2π)

. [sr−1] (3.82)

the reflected intensity is more simply expressed

Lr
λ = f r(ωi,ωr)L

i
λdΩi. (3.83)

As reflection from a surface has the potential to concentrate rays into a small

solid angle the BRDF lies in the interval [0,∞). As both the radiant reflectance and

the BRDF are defined in terms of spectral quantities they are themselves spectrally

dependent. As emphasised by Schaepman-Strub et al. [2006] the BRDF is the ratio

of infinitesimal quantities and cannot be directly measured.

For diffuse illumination the reflected radiance is the sum of the contributions from

each indent direction ωi into the reflected direction ωr as

Lr
λ(ωr) =

∫ −2π

0

Li
λ(ωi) f r(ωi,ωr) dΩi. (3.84)

Implicit in the equations above is the assumption that reflection is describing in-

cident energy travelling downward (in the sense that z component of the incident

radiance direction vector is less than zero) being redirected upward. Equally valid

are equations derived for an upward radiation field reflected downward by a layer as

the reflectance is the same for a homogeneous layer whether illuminated from above

or below.
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3.6.2 Reflectance Terms

The BRDF can be used to construct reflectance terms that describe the transfer of

energy for a range of geometries. For instance the directional-hemispherical re-

flectance, R(ωi, 2π), is the ratio of the reflected power in the hemisphere above the

surface to the power comining from a specific direction. Mathematically it is defined

by

R(ωi, 2π) =

∫ 2π

0

[

Li
λ(ωi) f r(ωi,ωr)dΩi

]

dΩr

Li
λ(ωi)dΩi

=

∫ 2π

0

f r(ωi,ωr) dΩr (3.85)

The hemispherical-directional reflectance, R(−2π,ωr), relates the outgoing radiance

to the incoming hemispherical illumination and is defined as

R(−2π,ωr) =

∫ −2π

0
Li
λ(ωi) f r(ωi,ωr) dΩi

∫ −2π

0
Li
λ(ωi) dΩi

[sr−1] (3.86)

The bihemispherical reflectance, R(−2π, 2π), is the ratio of the hemispherically in-

tegrated reflected power from the surface to the incident power onto the surface, i.e.

R(−2π, 2π) =

∫ 2π

0

∫ −2π

0
Li
λ(ωi) f r(ωi,ωr) dΩi dΩr

∫ −2π

0
Li
λ(ωi) dΩi

(3.87)

Albedo is often used as a synonym for bihemispherical reflectance. However care

has to be taken as albedo is also used as an abbreviation for the Bond albedo which

is the fraction of sunlight a planetary body reflects.

3.6.3 Reflection Function

In some instances it is convenient to use a reflection function (or reflectance factor)

reflection functionwhich is defined as the reflectance relative to that from an ideal

Lambertian surface. The bidirectional reflection function R(ωi,ωr) is then

R(ωi,ωr) =
f r(ωi,ωr)

1/π
[dimensionless] (3.88)

Using this definition, the reflected radiance is

Lr
λ(ωr) =

1

π

∫ −2π

0

Li
λ(ωi)R(ωi,ωr) dΩi. (3.89)

It is important to realise that as R(ωi,ωr) is a ratio it can take on values in the do-

main [0,∞]. Physically, a reflected direction where R(ωi,ωr) is larger than one can

be interpreted as the surface concentrating the reflected energy into that direction.

Table 3.6 relates reflectance terms to the reflection function.
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TABLE 3.6

Reflectance Terms defined in terms of the Reflection Function.

bidirectional transmittance distribution function
f r(ωi,ωr) = R(ωi,ωr)/π

hemispherical-directional reflectance

R(−2π,ωr) =
1
π

∫ −2π

0
Li
λ(ωi)R(ωi,ωr) dΩi/

∫ −2π

0
Li
λ(ωi) dΩi

directional-hemispherical reflectance

R(ωi, 2π) = 1
π

∫ 2π

0
R(ωi,ωt) dΩr

bihemispherical reflectance

R(−2π, 2π) = 1
π

∫ 2π

0

∫ −2π

0
Li
λ(ωi)R(ωi,ωt) dΩi dΩr/

∫ −2π

0
Li
λ(ωi) dΩi

3.6.4 Special Cases

Generally knowledge of the incident radiation field is needed to evaluate either the

hemispherical-directional reflectance or the bihemispherical reflectance. A simplifi-

cation occurs when the incident radiation field is either unidrectional or isotropically

diffuse.

3.6.4.1 Isotropic Incident Radiation

For isotropic radiation Li
λ is independent of incident direction and the associated

irradiance is Ei
λ(−2π) = πLi

λ. The hemispherical-directional reflectance is then

R(−2π,ωr) =
1

π

∫ −2π

0

f r(ωi,ωr) dΩi =
1

π2

∫ −2π

0

R(ωi,ωr) dΩi [isotropic] (3.90)

The hemispherical-directional reflectance for isotropic illumination is used to give

the radiance reflected by an isotropically illuminated surface,

Lr
λ(ωr) = Ei

λ(−2π)R(−2π,ωr) [isotropic] (3.91)

For isotropic illumination the bihemispherical reflectance is known as the white

sky albedo and is calculated from

R(−2π, 2π) =
1

π

∫ 2π

0

∫ −2π

0

f r(ωi,ωr) dΩi dΩr =
1

π2

∫ 2π

0

∫ −2π

0

R(ωi,ωr) dΩi dΩr.

[isotropic] (3.92)

This term is useful for calculating the reflected irradiance for isotropic incidence

Er
λ(2π) = Ei

λ(−2π)R(−2π, 2π). [isotropic] (3.93)

3.6.4.2 Unidirectional Incident Radiation

For unidirectional parallel incident irradiance from direction ωi

Ei
λ(−2π) = cos θiE

i
λ(ωi) [unidirectional] (3.94)
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so that the reflected radiance is given by

Lr
λ(ωr) = cos θiE

i
λ(ωi) f r(ωi,ωr) = cos θiE

i
λ(ωi)

R(ωi,ωr)

π
. [unidirectional] (3.95)

For the unidirectional case

R(−2π,ωr) = f r(ωi,ωr) =
R(ωi,ωr)

π
[unidirectional] (3.96)

Additionally the directional-hemispherical reflectance has the same value as the bi-

hemispherical reflectance i.e.

R(ωi, 2π) [= R(−2π, 2π)] =

∫ 2π

0

f r(ωi,ωr) dΩr =
1

π

∫ 2π

0

R(ωi,ωr) dΩr.

[unidirectional] (3.97)

In the first case the radiation field is providing energy from a specific direction, in

the second case the reflectance is only being expressed with respect to radiance from

that direction. As the directional-hemispherical reflectance represents the energy

reflected by a surface for one illumination direction it is sometimes referred to as

the black sky albedo. The reflected irradiance for unidirectional incidence is best

expressed generally as

Er
λ(2π) = cos θiE

i
λ(ωi)R(ωi, 2π). [unidirectional] (3.98)

3.6.4.3 Lambertian Reflector

A Lambertian reflector reflects incident energy isotropically. Its BRDF is therefore

f r = ρ/π which is independent of incident or reflection angle and where ρ is a

constant in the range [0, 1]. An ideal Lambertian reflector redirects all the energy

that is incident on it (i.e. ρ = 1) so f r = 1/π.

The directional-hemispherical reflectance for a Lambertian reflector is

R(ωi, 2π) =

∫ 2π

0
Li
λ(ωi)

ρ
π
dΩi dΩr

Li
λ(ωi)dΩi

= ρ. [Lambertian] (3.99)

The hemispherical-directional reflectance for a Lambertian reflector is

R(−2π,ωr) =

∫ −2π

0
Li
λ(ωi)

ρ
π

dΩi

∫ −2π

0
Li
λ(ωi) dΩi

=
ρ

π
[Lambertian] (3.100)

The bihemispherical reflectance for a Lambertian reflector is

R(−2π, 2π) =

∫ 2π

0

∫ −2π

0
Li
λ(ωi)

ρ
π

dΩi dΩr

∫ −2π

0
Li
λ(ωi) dΩi

= ρ. [Lambertian] (3.101)
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3.7 Transmission

FIGURE 3.14

Attenuation of a beam of light.

Consider a circular beam of light travelling though a volume comprising particles

that could remove energy from the beam of cross-section r as shown in Figure 3.14.

Each particle has an effective cross-section of σ and there are n particles per unit

volume. Then in an infinitesimal distance dz the fraction of the beam that is lost is

the ratio between the area the particles present and the area of the beam. The change

in radiance in dz is

dL = −σnπr2 dz

πr2
L (3.102)

Solving this equation gives Bouguer’s Law

L(z) = L0e−σnz (3.103)

The magnitude of the exponential term is known as the optical path χ so

χ = σnz (3.104)

The direct transmittance through the media is related to the optical path by

T
(

=
L(z)

L0

)

= e−χ (3.105)

In addition to the direct transmittance energy that is removed from the beam can be

scattered one or more times so that it also passes through the media. Whereas the

direct transmittance emerges from the media with its direction unaltered the scattered

energy can exit the media in any direction. Energy that is transmitted in this way is

known as the diffuse transmittance.
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3.7.1 Angular Distribution of Diffuse Transmission

FIGURE 3.15

Transmission geometry.

Consider the transmission of radiation by a layer which is infinitesimally thin

physically but has an arbitrary optical thickness. A surface element dA of the layer

is illuminated by a single small source radiance Li than subtends a solid angle dωi =

sin θi dθi dφi at dA. A small receiver is placed below the layer where it subtends a

solid angle dωr = sin θr dθr dφr at dA. This geometry is shown in Figure 3.15. The

fraction of the radiant energy incident on an elemental area dA that passes is mea-

sured by the receiver is the diffuse transmitted energy and it can be represented by

expressions analogous to those for diffuse reflectance.

The radiant transmittance is defined as

f †(ωi,ωt) =
dΦt

λ

dΦi
λ

=
Lt
λdAdΩt

Li
λdAdΩi

=
Lt
λdΩt

Li
λdΩi

(3.106)

which can be rewritten as

Lt
λdΩt = Li

λ f †(ωi,ωt)dΩi (3.107)

The spectral bidirectional transmittance distribution function (BTDF) is then defined

by

f t(ωi,ωt) =
d f †

dΩt

=
Lt
λ

Li
λdΩi

=
Lt
λ

Ei
λ(−2π)

[sr−1] (3.108)
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For diffuse illumination the diffusely transmitted radiance is the sum of the contribu-

tions from each indent direction ωi into the transmitted direction ωt as

Lt
λ(ωt) =

∫ −2π

0

Li
λ(ωi) f t(ωi,ωt) dΩi. (3.109)

The direct component is not included here but contributes to the diffuse transmission

to create the total transmission. This is discussed in section 3.7.4.

3.7.2 Transmittance Terms

As with the BRDF the BTDF can be used to construct a number of transmittance

terms for the diffusely transmitted light. The principal terms are the hemispherical-

directional transmittance, T (−2π,ωr), relates the outgoing radiance to the incoming

hemispherical illumination and is defined as

T (−2π,ωt) =

∫ −2π

0
Li
λ(ωi) f t(ωi,ωt) dΩi

∫ −2π

0
Li
λ(ωi) dΩi

(3.110)

The directional-hemispherical transmittance, T (ωi,−2π), is defined by

T (ωi, 2π) =

∫ −2π

0
Li
λ(ωi) f t(ωi,ωt) dΩt

Li
λ(ωi)

=

∫ −2π

0

f t(ωi,ωt) dΩt. (3.111)

and the bihemispherical transmittance, T (−2π,−2π), is defined by

T (−2π,−2π) =

∫ 2π

0

∫ −2π

0
Li
λ(ωi) f t(ωi,ωt) dΩi dΩt

∫ −2π

0
Li
λ(ωi) dΩi

(3.112)

Knowledge of the incident radiation field is needed to evaluate the hemispherical-

directional transmittance and the bihemispherical transmittance. A simplification

occurs when the incident radiation field is either unidrectional or isotropically dif-

fuse.

3.7.2.1 Transmittance Terms for Isotropic Incident Radiation

The hemispherical-directional transmittance T (−2π,ωt) for isotropic illumination

becomes

T (−2π,ωt) =
1

π

∫ −2π

0

f t(ωi,ωt) dΩi [isotropic] (3.113)

so that in this case the transmitted radiance is

Lt
λ(ωt) = Ei

λ(−2π)T (−2π,ωt) [isotropic] (3.114)

where Ei
λ(−2π) = πLi

λ.
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For isotropic illumination the bihemispherical transmittance, becomes

T (−2π,−2π) =
1

π

∫ −2π

0

∫ −2π

0

f t(ωi,ωt) dΩi dΩt. [isotropic] (3.115)

This term is useful for calculating the transmitted irradiance for isotropic incidence

Et
λ(−2π) =

∫ −2π

0

Lt
λ(ωt) dΩt =

∫ −2π

0

∫ −2π

0

Li
λ(ωi) f t(ωi,ωt) dΩi dΩt

= Ei
λ(−2π)T (−2π,−2π). [isotropic] (3.116)

3.7.2.2 Transmittance Terms for Unidirectional Incident Radiation

For illumination from a single direction

Lt
λ(ωt) = cos θiE

i
λ(ωi) f t(ωi,ωt) [unidirectional] (3.117)

The directional-hemispherical transmittance is useful for calculating the transmit-

ted irradiance for unidirectional incidence

Et
λ(−2π) =

∫ −2π

0

Lt
λ(ωt) dΩt = cos θiE

i
λ(ωi)

∫ −2π

0

f t(ωi,ωt) dΩt,

= cos θiE
i
λ(ωi)T (ωi,−2π). [unidirectional] (3.118)

3.7.3 Transmittance Factors

The spectral bidirectional transmittance distribution factor T (ωi,ωt) describes the

transmittance relative to a perfect diffuser ( f t(ωi,ωt) = 1/π) and is defined

T (ωi,ωt) =
f t(ωi,ωt)

1/π
=

πLt
λ

Li
λdΩi

[dimensionless] (3.119)

Using this definition gives the transmitted radiance as

Lt
λ(ωt) =

1

π

∫ −2π

0

Li
λ(ωi)T (ωi,ωt) dΩi (3.120)

for diffuse illumination of the surface and

Lt
λ(ωt) =

cos θiE
i
λ(ωi)T (ωi,ωt)

π
[unidirectional] (3.121)

for a unidirectional beam. Table 3.7 relates transmittance terms to transmittance

factors.
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TABLE 3.7

Transmittance Terms defined in terms of the Transmittance Factor.

bidirectional transmittance distribution function
f t(ωi,ωt) = T (ωi,ωt)/π

hemispherical-directional transmittance

T (−2π,ωt) =
1
π

∫ −2π

0
Li
λ(ωi)T (ωi,ωt) dΩi/

∫ −2π

0
Li
λ(ωi) dΩi

directional-hemispherical transmittance

T (ωi, 2π) = 1
π

∫ 2π

0
T (ωi,ωt) dΩt

bihemispherical transmittance

T (−2π, 2π) = 1
π

∫ 2π

0

∫ −2π

0
Li
λ(ωi)T (ωi,ωt) dΩi dΩt/

∫ −2π

0
Li
λ(ωi) dΩi

3.7.4 Total Transmittance

The added complication for transmittance is that in addition to the energy in the

diffuse transmittance there is energy transmitted by the unattenuated beam. The total

transmittance, is given by summing these two components. The bidirectional total

transmittance distribution function f tt(ωi,ωt) is defined

f tt(ωi,ωt) =
f t(ωi,ωt) ωi , ωt

f t(ωi,ωt) + e−χ/ cos θi ωi = ωt
(3.122)

where χ is the optical depth of the transmitting layer. For unidirectional illumination,

the irradiance transmitted by such a layer is

Et
λ(−2π) = cos θiE

i
λ(ωi)T (ωi, 2π) + cos θiE

i
λ(ωi)e

−χ/ cos θi

[unidirectional] (3.123)

The diffuse fraction f d is the ratio of the diffuse irradiance to the total irradiance

illuminating a surface. So for this case

f d =
cos θiE

i
λ(ωi)T (ωi, 2π)

cos θiE
i
λ(ωi)T (ωi, 2π) + cos θiE

i
λ(ωi)e−χ/ cos θi

=
T (ωi, 2π)

T (ωi, 2π) + e−χ/ cos θi

[unidirectional] (3.124)

3.8 Scattering

This section needs review
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3.8.1 Scattering in Radiometric Terms

The angular distribution of the scattered radiation is the paramount feature of a scat-

tering volume. The radiance, Li
λ(ωi), produces an irradiance, dEi

λ(ωi) = Li
λ(ωi)dωi,

in the volume. The distribution of radiant intensity, dIs
λ(ωs), scattered from dV is

specified by the volume scattering function defined by

f sca(λ;ωi;ωs) =
d2Is

λ(ωs)

dEi
λ(ωi)dV

, (3.125)

=
d2Is

λ(ωs)

dLi
λ(ωi)dωidV

. (3.126)

Although the volume scattering function provides the angular distribution of scat-

tered radiation, it is not very useful because its magnitude is dependent on the inci-

dent irradiance and the volume size.

To remove the dimensionality the phase function is defined as the ratio of the

scattered intensity to the intensity from an isotropic scatterer.

P(λ;ωi;ωs) = 4π
Is
λ(ωs)

∫ 4π

0
Is
λ(ωs) dωs.

, (3.127)

The later can be found from equating the scattered energy defined by Equation 3.142

to the integral of the scattered intensity so that

P(λ;ωi;ωs) = 4π
Is
λ(ωs)

∫ 4π

0
Is
λ(ωs) dωs.

, (3.128)

For scatterers that have rotational symmetry such as cloud water droplets the phase

function can be characterised in terms of the scattering angle

In terms of spherical polar coordinates the incident ~xi and scattered ~xs directions

are expressed

~xi = sin θi cos φi~ı + sin θi sin φi~ + cos θi
~k (3.129)

~x = sin θ cos φ~ı + sin θ sin φ~ + cos θ~k (3.130)

where ~ı, ~ and ~k are the unit vectors in the x,y and z directions respectively. Fig-

ure 3.16 shows the relevant geometry. The cosine of the scattering angle Θ is found

from the dot product of the two vectors i.e.

cosΘ = sin θi cos φi sin θ cos φ + sin θi sin φi sin θ sin φ + cos θi cos θ (3.131)

= cos θi cos θ + sin θi sin θ cos(φi − φ) (3.132)

= µiµ +

√

1 − µ2
i

√

1 − µ2 cos(φi − φ) (3.133)

Note that the incident vector points to where the light is direction that the light is

travelling. Typically we are given the coordinates pointing towards the Sun i.e. θo
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FIGURE 3.16

Relation between angles in the scattering place.

and φo are the solar zenith and azimuth angles. In this case the scattering angle is

cosΘ = − sin θo cos φo sin θ cos φ − sin θo sin φo sin θ sin φ − cos θo cos θ(3.134)

= − cos θo cos θ − sin θo sin θ cos(φo − φ) (3.135)

= −µoµ −
√

1 − µ2
o

√

1 − µ2 cos(φo − φ) (3.136)

The scattering angle, Θ is related to the incoming and scattered direction through

cosΘ = cos θi cos θs + sin θi sin θs(φs − φi) (3.137)

Other notation

For a volume the redirection of irradiance Eλ(ωi) from direction ωi to direction ωs

is expressed

Lλ(ωs) = β
sca P(ωi, ωs)

4π
Eλ(ωi) (3.138)

which can also be expressed in terms of the incident radiance Lλ(ωi) as

Lλ(ωs) = β
sca P(ωi, ωs)

4π
Lλ(ωi) dΩi (3.139)

The later can be found from equating the scattered energy defined by Equation 3.142

to the integral of the scattered intensity

βscaEi
λ =

∫ 4π

0

Is
λ(ωs) dωs. (3.140)

The equivalent isotropic intensity is βscaEi
λ/4π and the phase function can be exprress

as

P(λ;ωi;ωs) = 4π
Is
λ(ωs)

βscaEi
λ

, (3.141)
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3.9 Scattering Cross Section

The scattering cross-section, σsca, is the equivalent area of the incident beam that

intercepts the same energy as that scattered by the particle, i.e.

σsca =

∫ 4π

0
Is
λ(ωs) dωs

Ei
λ

, (3.142)

where Is
λ(ωs) represents the intensity of light scattered into the elemental solid angle

ωs from a beam of light with irradiance Ei
λ.

3.10 Volume Emission Function, Volume Scattering Function

FIGURE 3.17

An illuminated volume.

The volume emission coefficient in scattering, jsca, is the radiant intensity per unit

volume in the direction ωs which results from radiation scattered from all directions

by the volume dV . Hence

jsca(ωs) =

∫ 4π

0

Li
λ(λ;ωi) f sca(λ;ωi;ωs) dωi. (3.143)
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This may be interpreted as the radiance per unit path length into direction ωs. The

actual radiance is given by the scattering source function, Ls
λ(λ;ωs), defined as

Ls
λ(λ;ωs) =

jsca

βsca
, (3.144)

=

∫ 4π

0

Li
λ(λ;ωi)

f sca(λ;ωi;ωs)

βsca
dωi, (3.145)

which by substitution of Equation 3.162 gives

Ls
λ(λ;ωs) =

1

4π

∫ 4π

0

Li
λ(λ;ωi)P(λ;ωi;ωs) dωi. (3.146)

It is assumed that the scattering characteristics are independent of the orientation

of the volume: for example βsca should strictly be written βsca(ωi). The assumption

that the scattering medium is isotropic in respect of the incident direction is generally

true for atmospheric scattering — with the exception of an air parcel containing very

large drops or ice crystals, both of which make the volume angularly dependent.

3.10.1 Scattering by a Particle

Scattering is the process by which a particle or scattering volume in the path of an

electromagnetic wave continuously removes energy from the incident wave and re-

radiates the energy into the sphere centred at the particle.

I(Θ) = Eσsca P(Θ)

4π
(3.147)

If all the energy intercepted by a particle, of radius r, was scattered then one might

expect the scattering cross-section to be simply πr2. However this is not the case —

as described later, light passing the particle at a distance slightly greater than r can

be influenced by the particle. Hence it is useful to introduce the scattering efficiency

Qsca, defined by

Qsca =
σsca

πr2
. (3.148)

Similarly, the absorption cross section, σabs, represents the equivalent area of the

beam that a particle removes by absorption and Qabs denotes the efficiency of this

process where

Qabs =
σabs

πr2
. (3.149)

The processes of scattering and absorption are additive and produce an extinction

cross-section according to

σext = σabs + σsca, (3.150)
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and a corresponding extinction efficiency,

Qext =
σext

πr2
. (3.151)

The ratio of the flux scattered to that scattered and absorbed is represented by the

single scatter albedo

ω̃ =
σsca

σext
. (3.152)

3.10.2 Scattering by a Volume Containing a Distribution of Particles

This section needs reordering

dVβ dl

dA

FIGURE 3.18

An illuminated volume.

Consider a volume element, dV = dAdl, of a scattering and absorbing medium in

thermal equilibrium, irradiated by radiation specified by zenith angle, θ, and azimuth

angle φ (see Figure 3.18). The terms volume absorption coefficient, βabs, and volume

scattering coefficient, βsca, can be thought of as a cross sectional area per unit volume

with which the ray interacts by absorption or scattering respectively. The volume

extinction coefficient, βext, gives the cross-sectional area removed from the beam per

unit volume. The volume coefficients are related to the cross sections by

βabs = Nσabs, (3.153)

βsca = Nσsca, (3.154)

βext = Nσext, (3.155)

where N denotes the number of scatterers/absorbers per unit volume. It follows from

Equation 3.150 that

βext = βabs + βsca. (3.156)
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It is clear that βext has dimensions of [L−1], usually km−1. It is also useful to use

the mass extinction coefficient (sometimes called the mass extinction cross-section),

kext which is related to the volume extinction coefficient by

βext = ρkext, (3.157)

where ρ denotes the mass per unit volume, i.e. the density. Similarly

βabs = ρkabs, (3.158)

βsca = ρksca. (3.159)

Warning: many authors leave out ‘mass’ and ‘volume’ and just use, for example,

absorption coefficient. If in doubt do a dimensional analysis.

If the volume scatter albedo, ω̃ is defined to be

ω̃ =
βsca

βext
, (3.160)

so

1 − ω̃ = βabs

βext
, (3.161)

i.e.

P(λ;ωi;ωs) =
f sca(λ;ωi;ωs)

βsca/4π
, (3.162)

we equate the power in the integral of the scattered radiation with the fraction of

the beam that has been scattered

Using Equations 3.142 and 3.125 we can express the volume scattering coefficient

in terms of the volume scattering function as

For a unidirectional source Equation 3.125 can be rearranged to give

f sca(λ;ωi;ωs) =
d2Is

λ(ωs)

dLi
λ(ωi)dωidV

. (3.163)

which shows that βsca can be interpreted as the fraction of the irradiance scattered per

unit distance. If this radiance is scattered isotropically then the scattered radiance is

dIs
λ(ωs)

dLi
λ(ωi)

= βsca/4πEi
λ (3.164)

The Mie solution for a single sphere can be extended to give the scattering char-

acteristics of a volume containing many spheres. The three important features of an

elemental scattering volume are: the volume extinction coefficient, the single scatter

albedo, and the phase function. The first of these parameters determines the depth

of penetration of unscattered radiation into the medium; the second determines the

relative importance of scattering to absorption; while the third gives the directional

characteristic of the scattered light.
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It is straightforward to extend the Mie solution for one particle to a polydispersion.

We assume that the particles are sufficiently far from each other that the distance

between them is much greater then the incident wavelength.

For a collection of particles, the volume coefficient or the total cross section area

per unit volume is the sum of the cross section times the density of each of the species

present. This is written explicitly for a continuous distribution of particle sizes as

βx =

∫ r2

r1

σxn(r) dr, (3.165)

where r1 and r2 represent the limits of the particle size distribution and n(r) denotes

the number density of particles having a radius between r and r+dr. The superscript,

x, denotes either absorption, scattering, or extinction.

FIGURE 3.19

The phase function for a single drop and for a distribution of drops with an equivalent

effective radius.

The volume phase function is expressed as

p(Θ) =
1

k2

∫ r2

r1
[(i1(x; m;Θ) + i2(x; m;Θ))/2] n(r) dr

βsca/4π
. (3.166)

It is evident from this equation that p(Θ) is independent of the particle concentra-

tion, that it is dimensionless, and that it meets the normalisation requirement. The

integrated phase function varies smoothly compared to the rapid oscillations which

occur in the phase function for a single particle (see Figure 3.19). The smooth change

exhibited for a polydisperse drop distribution can be attributed to the contributions

from many particles cancelling the effects that are not invariant in angle — hence

features such as the forward diffraction peak and the rainbow are retained.
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3.10.3 Asymmetry Parameter and Backscatter Fraction

The asymmetry parameter is often used as a single measure of the directional prop-

erties of scattered light. The asymmetry parameter has a value from -1, for strictly

backscattering, to 1 for strictly forward scattering. For isotropic scattering g is 0.

3.10.4 Legendre Expansion of the Phase Function

In many radiative transfer applications it is convenient to express the phase function

as a finite expansion in Legendre polynomials

p(µ) =

L∑

l=0

ωlPl(µ), (3.167)

where µ the cosine of the scattering angle and Pl(µ) is a Legendre polynomial of

order l. An alternative version of the expansion in Equation 3.167 is [Wiscombe,

1977]

p(µ) =

L∑

l=0

(2l + 1)χlPl(µ), (3.168)

where χl are the normalised Legendre coefficients which are related to ωl by

χl =
ωl

2l + 1
. (3.169)

The asymmetry parameter g is the first moment and is related to the Legendre coef-

ficient, ω1, by g = χ1 = ωl/3.

Fowler [1983], Allen [1974], and Chu and Churchill [1955] showed how the Leg-

endre coefficients ωl could be expressed directly from the Mie coefficients an and bn.

However their algorithm for the calculation of the coefficients involves the summa-

tion of a series within a series and takes considerable time if x > 15. For large x it is

faster to calculate the Legendre coefficients from the phase function, i.e.

ωl =
2l + 1

2

∫ 1

−1

p(µ)Pl(µ) dµ

(

or χl =
1

2

∫ 1

−1

p(µ)Pl(µ) dµ

)

(3.170)

The computation time of the Legendre coefficients using Equation 3.170 is a func-

tion of the number of angles at which the Mie phase function is evaluated. Only one

set of points is chosen to calculate all the Legendre coefficients. Earlier authors used

Gauss-Legendre quadrature on the interval [-l,l]. If the phase function is a polyno-

mial of degree L the integrand in Equation 3.170 is at most a polynomial of degree

2L. As Gauss-Legendre quadrature of order N is exact for polynomials of degree

less than 2N, the order of the quadrature formula must exceed the number of sig-

nificant Legendre coefficients. To improve the accuracy of calculations Hunt [1970]

recommend using Lobatto quadrature on [-l,l] so that the 0◦and l80◦scattering angles

are included as explicit quadrature points [also see Kattawar et al., 1973]. Wiscombe
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[1977] noted that a further dramatic improvement in accuracy is gained by using Lo-

batto quadrature on the interval [0,180] as more quadrature points are included in the

forward scattering peak.

In general Eq. [a.a.5] gives the first N moments to about the same accuracy, pro-

vided N exceeds some lower bound dependent on the phase function. This means

that ω0 an excellent error monitor. If it equals unity to k decimal places then the

remaining ωl will be accurate to between k − 1 and k + l decimal places.

Clark et al. [1957] showed that the number of significant terms in the expansion

of the phase function is dependent on the drop’s size parameter. The expansion

of the complex amplitudes in terms of functions related to the Legendre functions

requires a little over x terms. This is a consequence of the localization principle

which attributes the terms with subscript n to a ray passing at a distance nλ/2π from

the centre. In squaring to obtain the phase function the required number of terms goes

to 2x+a few. However, a polymorphic collection of drops has a much smoother phase

function with a strong forward peak. van de Hulst [1980] suggested that 20 to 30

Legendre terms would describe the smoothed pattern for water drops independently

of their size. Substituting this into the expansion of the phase function and using the

addition theorem for spherical harmonics (ref Liou or math book) gives

3.10.5 Approximation of the Forward Peak of the Phase Function

However, a polymorphic collection of drops has a much smoother phase function

with a strong forward peak. van de Hulst [1980] suggested that 20 to 30 Legendre

terms would describe the smoothed pattern for water drops independently of their

size. In this approach the forward peak is truncated and the optical depth scaled

[McKellar and Box, 1981]. The Legendre expansion of the phase function (Equa-

tion ref) is

P′(cosΘ) = 2 f δ0, (1 − cosΘ) + (1 − f )
∑

(2n + 1)χ′nPn(cosΘ) (3.171)

If χ′n s defined

χ′n =
χn − f

1 − f
(3.172)

then P and P’ are identical.

When the new phase function is substituted into the equation of radiative transfer

it is found that the optical depth and single scatter albedo are transformed to

τ′ = (1 − ω̃ f )τ (3.173)

ω̃′ =
ω̃(1 − f )

1 − ω̃ f
(3.174)

3.10.6 The Henyey-Greenstein Phase Function

Henyey and Greenstein [1941] introduced an analytic phase function given by

p(cosΘ) =
1 − g2

(1 + g2 − 2g cosΘ)3/2
. (3.175)
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FIGURE 3.20

(a) Henyey-Greenstein phase functions for g = −0.75, 0 and 0.75. (b) Polar plot of

the same phase functions for an incident ray travelling in the positive ’x’ direction.

which can be respressed when θ = 0 or π as

p(1) =
1 + g

(1 − g)2
p(−1) =

1 − g

(1 + g)2
. (3.176)

The shape of the phase function, shown in Figure 3.20, is controlled by the parameter

g. When g is 1 the Henyey-Greenstein phase function evaluates to zero at all angles

except the forwardscatter angle Θ = 0. Similarly when g = −1 the only non-zero

value is at the backscatter angle Θ = π. However these two delta functions are atyp-

ical as in general, the shape of the function is similar to phase functions elaborately

calculated from Mie theory. However, features such as the corona, rainbow and glory

are smoothed out. The influence of anisotropy can be tested in multiple scattering

calculations through the variation of the asymmetry parameter, g. Because of this,

the Henyey-Greenstein phase function has become a standard for test calculations on

multiple scattering.

One further advantage is that the Legendre expansion of the function has a very

simple form, i.e.

ωl = (21 + 1)gl. (3.177)

The Legendre terms for the Henyey-Greenstein phase function are monotonically

decreasing for 0 < g < 1/3. For higher values of g (< 1) the expansion terms first

increase then decrease for l > −1/ ln g − 1/2 so that ωl → 0 as l → ∞. Similarly,

the Legendre expansion terms of a phase function calculated using Mie theory (gen-

erally) increase then decrease [Wiscombe, 1977]. For the same level of accuracy,

the expansion limit of a Mie phase function is usually greater than the limit for a

Henyey-Greenstein phase function with the same asymmetry parameter. This is a

consequence of the smoother shape of the analytic function.
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Problem 3.1 Show that the étendue is conserved for an optical system comprising

an aperture-lens-aperture.

Problem 3.2 Consider an isotropic radiance field in an medium of refractive index n

encountering an interface where the second medium is a characterised by a refractive

index of 1 (e.g. this could by light from the ocean encountering the surface). Show

that the irradiance is reduced by a factor of n2.

Problem 3.3 A 60 W isotropic light source is used to illuminate an A4 sheet (21 ×
29.7 cm) of paper lying on a desk 3 m away. If a line from the light to the centre of

the paper makes an angle of 45◦with the paper, what is the radiant flux falling on the

sheet.

Problem 3.4 Show that the approximations for the Planck function at high and low

frequency extremes are

Bν(ν,T ) ≈
2kBTν2

c2 hν ≪ kBT
2hν3

c2 e
− hν

kBT hν ≫ kBT

These two limits are known as the Rayleigh-Jeans and Wein approximations respec-

tively.

Problem 3.5 Show that α(λ,ω) = ǫ(λ,ω).

Hint: One approach is to show that the principle of reciprocity is broken if α(λ,ω) ,

ǫ(λ,ω).

where δωi,ωt
is the Kronecker delta defined as

δωi,ωt

{

1 ωi = ωt

0 ωi , ωt
(3.178)

Problem 3.6 Show that the Henyey-Greenstein phase function is normalised to 1.
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