TABLE A.1

<table>
<thead>
<tr>
<th>Physical Constants</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avogadro’s number</td>
<td>$N_a = 6.02214179 \times 10^{23}$ molecule mol$^{-1}$</td>
</tr>
<tr>
<td>Boltzmann’s constant</td>
<td>$k_B = 1.3806504$ J K$^{-1}$</td>
</tr>
<tr>
<td>Electron charge</td>
<td>$e = 1.602176487 \times 10^{-19}$ C</td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>$G = 6.67429 \times 10^{-11}$ m3 kg$^{-1}$ s$^{-2}$</td>
</tr>
<tr>
<td>Magnetic permeability of free space</td>
<td>$\mu_0 = 4\pi \times 10^{-7}$ kg m$^{-1}$ A$^{-2}$</td>
</tr>
<tr>
<td>Mass of an electron</td>
<td>$m_e = 9.10938215 \times 10^{-31}$ kg</td>
</tr>
<tr>
<td>Permittivity of free space</td>
<td>$\varepsilon_0 = 8.854187817 \times 10^{-7}$ kg$^{-1}$ m$^{-3}$ s4 A2</td>
</tr>
<tr>
<td>Planck’s constant</td>
<td>$h = 6.62606896 \times 10^{-34}$ J s</td>
</tr>
<tr>
<td>Stefan-Boltzmann constant</td>
<td>$\sigma = 5.670400 \times 10^{8}$ J m$^{-2}$ s$^{-1}$ K$^{-4}$</td>
</tr>
<tr>
<td>Speed of light in a vacuum</td>
<td>$c = 2.99792458 \times 10^{8}$ m s$^{-1}$</td>
</tr>
<tr>
<td>Universal gas constant</td>
<td>$R = 8.314472$ J mol$^{-1}$ K$^{-1}$</td>
</tr>
</tbody>
</table>
TABLE A.2
Astronomical Values

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration of gravity</td>
<td>9.80616 m s$^{-2}$</td>
<td>9.80665 m s$^{-2}$</td>
</tr>
<tr>
<td>(at sea level and 45° latitude)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard gravity</td>
<td>9.80616 m s$^{-2}$</td>
<td>9.80665 m s$^{-2}$</td>
</tr>
<tr>
<td>(nominal global average)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angular velocity of rotation of the Earth</td>
<td>7.27221×10^5 rad s$^{-1}$</td>
<td>7.27221×10^5 rad s$^{-1}$</td>
</tr>
<tr>
<td>Average distance, Sun to Earth</td>
<td>D_S</td>
<td>1.496×10^8 km</td>
</tr>
<tr>
<td>Average distance, Earth to Moon</td>
<td>D_M</td>
<td>3.84×10^6 km</td>
</tr>
<tr>
<td>Radius of the Earth</td>
<td>R_E</td>
<td>6371 km</td>
</tr>
<tr>
<td>(volumetric mean)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average radius of the Moon</td>
<td>R_M</td>
<td>1740 km</td>
</tr>
<tr>
<td>Average radius of the Sun (visible disk)</td>
<td>R_S</td>
<td>6.96×10^8 km</td>
</tr>
<tr>
<td>Average solar flux at TOA</td>
<td>E_0</td>
<td>1366 W m$^{-2}$</td>
</tr>
<tr>
<td>Mass of the earth</td>
<td>M_E</td>
<td>5.988×10^{24} kg</td>
</tr>
</tbody>
</table>

TABLE A.3
Relevant Meteorological Constants

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of air</td>
<td>ρ</td>
<td>1.273×10^{-3} g cm$^{-3}$; 1.273 kg m$^{-3}$</td>
</tr>
<tr>
<td>at standard pressure and temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density of ice (0°C)</td>
<td>ρ_i</td>
<td>0.917×10^3 kg m$^{-3}$</td>
</tr>
<tr>
<td>Density of liquid water (4°C)</td>
<td>ρ_l</td>
<td>1×10^3 kg m$^{-3}$</td>
</tr>
<tr>
<td>Dry air gas constant</td>
<td>R_{air}</td>
<td>287 J kg$^{-1}$K$^{-1}$</td>
</tr>
<tr>
<td>Latent heat of fusion, ice</td>
<td>L_{ice}</td>
<td>3.34×10^3 J kg$^{-1}$</td>
</tr>
<tr>
<td>Latent heat of vaporization, water at 0 °C</td>
<td>L_v</td>
<td>2.50×10^6 J kg$^{-1}$</td>
</tr>
<tr>
<td>Molecular weight of dry air</td>
<td>M</td>
<td>28.97 g mol$^{-1}$</td>
</tr>
<tr>
<td>Saturation vapour pressure (0 °C)</td>
<td>e_0</td>
<td>6.1078 mb</td>
</tr>
<tr>
<td>Specific heat of air at constant pressure</td>
<td>C_p</td>
<td>10.4×10^2 J kg$^{-1}$K$^{-1}$</td>
</tr>
<tr>
<td>Specific heat of air at constant volume</td>
<td>C_v</td>
<td>7.17×10^2 J kg$^{-1}$K$^{-1}$</td>
</tr>
<tr>
<td>Standard pressure</td>
<td>p_0</td>
<td>1013.25 mb</td>
</tr>
<tr>
<td>Standard temperature</td>
<td>T_0</td>
<td>273.16 K</td>
</tr>
</tbody>
</table>
B

Mathematical Definitions and Identities

B.1 Mathematical Operators in Cartesian Coordinates

del

\(\nabla f = \frac{\partial f_x}{\partial x} \mathbf{i}_x + \frac{\partial f_y}{\partial y} \mathbf{i}_y + \frac{\partial f_z}{\partial z} \mathbf{i}_z \) \hfill (B.1)

divergence

\[\text{div} f = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z} \]

\(= \nabla \cdot f \) \hfill (B.2)

curl Laplacian

\[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \] \hfill (B.3)

B.2 Matrix Algebra

For matrices A and B

\((AB)^T = B^T A^T \) \hfill (B.5)

For a symmetric matrix S

\(\frac{\partial}{\partial x} (x - x_a)^T S^{-1} (x - x_a) = 2S(x - x_a) \) \hfill (B.6)

\(\frac{\partial}{\partial x} (y - Kx)^T S^{-1} (y - Kx) = -2K^T S(y - Kx) \) \hfill (B.7)
B.3 Legendre Polynomials

The Legendre polynomials $P_l(x)$, $l = 0, 1, 2, \ldots, $ are solutions of Legendre’s differential equation

$$ (1 - x^2) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + l(l + 1)y = 0 \quad (B.8) $$

when x is a real number in the range $[-1, 1]$. For $l \geq 0$ the polynomial can be written

$$ P_l(x) = \sum_{r=0}^{m} \frac{(2l - 2r)!}{2^r r!(l - r)!(l - 2r)!} x^{l-2r} \quad (B.9) $$

where the integer m is $l/2$ or $(l - 1)/2$. The explicit forms of the first six Legendre polynomials are

$$ P_0(x) = 1, \quad P_1(x) = x, \quad P_2(x) = \frac{1}{2}(3x^2 - 1), \quad P_3(x) = \frac{1}{2}(5x^3 - 3x), \quad P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3), \quad P_5(x) = \frac{1}{8}(65x^5 - 70x^3 + 15x). \quad (B.10) $$

The polynomials can be evaluated at the specific arguments -1, 0 and 1 to be

$$ P_l(-1) = (-1)^l \quad (B.11) $$
$$ P_l(0) = \frac{\cos(l\pi/2)\Gamma([l + 1]/2)}{\sqrt{\pi} \Gamma(l/2 + 1)} \quad (B.12) $$
$$ P_l(1) = 1 \quad (B.13) $$

Recurrence relations can be used to evaluate higher order Legendre polynomials. Formulae include

$$ P_{l+1}(x) = (2l + 1)P_l(x) + P_{l-1}(x) \quad (B.14) $$
$$ (l + 1)P_{l+1}(x) = (2l + 1)XP_l(x) - lP_{l-1}(x) \quad (B.15) $$
$$ P'_{l+1}(x) = XP'_l(x) + (l + 1)P_l(x) \quad (B.16) $$
$$ (x^2 - 1)P'_l(x) = xP_l(x) - lP_{l-1}(x) \quad (B.17) $$
$$ P''_l(x) = \frac{l(l+1)}{2l+1} \frac{1}{1-x^2} [P_{l+1}(x) - P_{l-1}(x)] \quad (B.18) $$

where the prime denotes differentiation with respect to x. Finally the Legendre polynomials are interrelated through

$$ P_{l-x} = (-1)^l P_l(x) \quad (B.19) $$
$$ P_{l-1}(x) = P_l(x) \quad (B.20) $$
B.4 Associated Legendre Polynomials

The equation for the associated Legendre polynomials is [Abramowitz and Stegun, 1964]
\[
(1 - x^2) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + \left[l(l+1) - \frac{m^2}{1-x^2} \right] y = 0 \quad \text{(B.21)}
\]
has a solution (the solution needs a reference, also need to discuss arguments greater than 1)
\[
P_m^l(x) = (1 - x^2)^{m/2} \frac{d^m P_l(x)}{dx^m} \quad \text{(B.22)}
\]
where x is restricted to $[-1, 1]$. Some authors include a factor $(-1)^m$ in the definition of $P_m^l(x)$. The associated Legendre polynomials have the following explicit forms
\[
P_0^0(x) = 1, \quad P_1^0(x) = x, \quad P_2^0(x) = \frac{1}{2} (3x^2 - 1), \quad P_2^1(x) = 3x(1 - x^2)^{1/2}
\]
\[
P_3^0(x) = \frac{1}{2} (5x^3 - 3x), \quad P_3^1(x) = \frac{1}{2} (5x^3 - 1)(1 - x^2)^{1/2}, \quad P_3^2(x) = 15(1 - x^2)
\]
also
\[
P_m^l(x) = P_l(x) \quad \text{and} \quad P_{l}^{-m}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_m^l(x). \quad \text{(B.24)}
\]
The associated Legendre polynomials obey the following recurrence relations
\[
(2l+1)P_{l+1}^m(x) = (l+m)P_l^m(x) + (l-m+1)P_{l-1}^m(x), \quad \text{(B.25)}
\]
\[
(1 - x^2)^{1/2} \frac{dP_l^m(x)}{dx} = \frac{1}{2} (l+m)(l-m+1)P_{l-1}^m(x) + \frac{1}{2} P_{l+1}^m(x), \quad \text{(B.26)}
\]
\[
(x^2-1)P_l^m(x) = l^2 P_l^m(x) - (l+m)P_{l-1}^m(x) \quad \text{(B.27)}
\]

B.5 Mie Angular Functions

The Mie angular functions π_n and τ_n are defined in terms of the associated Legendre polynomials as
\[
\pi_n(\cos \Theta) = \frac{1}{\sin \Theta} P_n^l(\cos \Theta) \quad \text{(B.28)}
\]
\[
\tau_n(\cos \Theta) = \frac{d}{d\Theta} P_n^l(\cos \Theta). \quad \text{(B.29)}
\]
Evaluating the first terms gives
\[
\pi_0(\cos \Theta) = 0, \quad \pi_1(\cos \Theta) = 1, \quad \pi_2(\cos \Theta) = 3 \cos \Theta \quad \text{(B.30)}
\]
\[
\tau_0(\cos \Theta) = 0, \quad \tau_1(\cos \Theta) = \cos \Theta, \quad \tau_2(\cos \Theta) = 3 \cos 2\Theta
\]
\[
\pi_n(\cos \Theta) = \frac{1}{\sin \Theta} \left(\frac{(2n-1) \cos \Theta P_{n-1}(\cos \Theta) - (n-1)P_{n-2}(\cos \Theta)}{n} \right) \quad \text{(B.31)}
\]

\[
\frac{1}{\sin \Theta} \left(\frac{(2n-1) \cos \Theta P_{n-1}(\cos \Theta)}{n} \right) = \frac{(n-1)P_{n-2}(\cos \Theta)}{n} \quad \text{(B.32)}
\]

B.6 Bessel Functions

The solutions to Bessel’s Equation
\[
x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0 \quad \text{(B.33)}
\]
are called Bessel functions. The order of the Bessel function solution is determined by the constant \(n \). When \(n \) is not an integer the two solutions of Equation B.33 are the Bessel function of the first kind of order \(n \), \(J_n(x) \). Expressed as a series [see Boas, 2006, for the derivation] they are
\[
J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{\Gamma(m+1)\Gamma(m+1+n)} \left(\frac{x}{2} \right)^{2m+n} \quad \text{(B.34)}
\]
and
\[
J_{-n}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{\Gamma(m+1)\Gamma(m+1-n)} \left(\frac{x}{2} \right)^{2n-2m} \quad \text{(B.35)}
\]
giving the general solution to Bessel’s equation of
\[
y(x) = c_1 J_n(x) + c_2 J_{-n}(x) \quad n \text{ not an integer} \quad \text{(B.36)}
\]
where \(c_1 \) and \(c_2 \) are constants.

To provide solutions at integer orders a combination of \(J_n(x) \) and \(J_{-n}(x) \) are used as the second solution of Bessel’s equation. These are \(Y_n(x) \) called Bessel functions of the second kind of order \(n \) and defined
\[
Y_n(x) = \frac{\cos \pi n J_n(x) - J_{-n}(x)}{\sin \pi n}. \quad \text{(B.37)}
\]

In some texts Bessel functions of the second kind are called the Weber functions or the Neumann functions (and so written \(N_n(x) \)). The general solution of Bessel’s equation applicable for all \(n \) is then
\[
y(x) = c_3 J_n(x) + c_4 Y_n(x), \quad \text{all } n \quad \text{(B.38)}
\]
where \(c_3 \) and \(c_4 \) are constants.
Appendix B: Mathematical Definitions and Identities

Finally a complex linear combination of Bessel functions of the first and second kinds is used to form Bessel functions of the third kind (also known as Hankel functions) $H_n^{(1)}$ and $H_n^{(2)}$. These are defined

\[
H_n^{(1)}(x) = J_n(x) + iY_n(x), \quad \text{and} \quad H_n^{(2)}(x) = J_n(x) - iY_n(x).
\]

Boas [2006] develops the following relations between the Bessel functions and their derivatives (which are also valid for the Neumann function),

\[
\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x),
\]

\[
\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x),
\]

\[
J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x),
\]

\[
J_{n-1}(x) - J_{n+1}(x) = 2 J'_n(x),
\]

\[
J'_n(x) = -\frac{n}{x} J_n(x) + J_{n-1}(x) = \frac{n}{x} J_n(x) - J_{n+1}(x).
\]

B.7 Spherical Bessel Functions

The spherical Bessel function are defined in terms the Bessel functions of half-odd integer order. They are [Boas, 2006]

\[
j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+1/2}(x),
\]

\[
y_n(x) = \sqrt{\frac{\pi}{2x}} Y_{n+1/2}(x),
\]

\[
h_n^1(x) = j_n(x) + iy_n(x) = \sqrt{\frac{\pi}{2x}} H^{(1)}_{n+1/2}(x),
\]

\[
h_n^2(x) = j_n(x) - iy_n(x) = \sqrt{\frac{\pi}{2x}} H^{(2)}_{n+1/2}(x).
\]

The power series expansions for the first and second order spherical Bessel functions are

\[
j_n(x) = 2^n x^n \sum_{m=0}^{\infty} \frac{(-1)^m n!}{m!(2n+2m+1)!} x^{2m},
\]

\[
y_n(x) = -\frac{1}{2^{n+1} x^{n+1}} \sum_{m=0}^{\infty} \frac{\Gamma(2n-2m+1)}{m! \Gamma(n-m+1)} x^{2m}.
\]
Using these expressions the Ricatti-Bessel functions for the first two orders are
\[j_0(x) = 1 - \frac{x^2}{6} + \frac{x^4}{120}, \quad j_1(x) = \frac{x}{3} - \frac{x^3}{36} + \frac{x^5}{720}, \quad j_2(x) = \frac{x^2}{15} - \frac{x^4}{216} + \frac{x^6}{7200}, \quad j_0(x) = -\frac{1}{2} + \frac{x}{2} - \frac{x^3}{24}, \quad j_1(x) = -\frac{1}{2} - \frac{x}{2} - \frac{x^3}{24}. \] (B.52)

B.8 Ricatti-Bessel Functions

The Ricatti-Bessel functions \(\psi_n(x) \), \(\chi_n(x) \) and \(\zeta_n(x) \) are the product of the relevant spherical Bessel function with its argument, i.e.

\[\psi_n(x) = x j_n(x) = \sqrt{\frac{x}{2}} J_{n+1/2}(x), \] (B.53)
\[\chi_n(x) = x y_n(x) = \sqrt{\frac{x}{2}} Y_{n+1/2}(x), \] (B.54)
\[\zeta_n(x) = \psi_n(x) + i \chi_n(x) = \sqrt{\frac{x}{2}} H^{(1)}_{n+1/2}(x). \] (B.55)

The infinite series expressions are

\[\psi_n(x) = 2^n x^{n+1} \sum_{m=0}^{\infty} \frac{(-1)^m(n+m)!}{m!(2n + 2m + 1)!} x^{2m}, \] (B.56)
\[\chi_n(x) = -\frac{1}{2^n x^n} \sum_{m=0}^{\infty} \frac{\Gamma(2n - 2m + 1)}{m!\Gamma(n - m + 1)} x^{2m}. \] (B.57)

Alternatively they can be written as a terminating series [Gumprecht and Sliepcevich, 1951]

\[\psi_n(x) = \sin \left(x - \frac{nx}{2} \right) \sum_{m=0}^{\infty} \frac{(-1)^m(n+m)!}{(2m)!(n-2m)!(2x)^{2m}}, \]
\[+ \cos \left(x - \frac{nx}{2} \right) \sum_{m=0}^{\infty} \frac{(-1)^m(n+m)!}{(2m+1)!(n-2m-1)!(2x)^{2m+1}}, \] (B.58)
\[\chi_n(x) = (-1)^n \cos \left(x + \frac{nx}{2} \right) \sum_{m=0}^{\infty} \frac{(-1)^m(n+m)!}{(2m)!(n-2m)!(2x)^{2m}}, \]
\[- \sin \left(x + \frac{nx}{2} \right) \sum_{m=0}^{\infty} \frac{(-1)^m(n+m+1)!}{(2m+1)!(n-2m-1)!(2x)^{2m+1}}. \] (B.59)

Using these expressions the Ricatti-Bessel functions for the first two orders are

\[\psi_0(x) = \sin x, \quad \psi_1(x) = \cos x, \quad \zeta_0(x) = \sin x + i \cos x, \]
\[\psi_1(x) = \cos x, \quad \chi_1(x) = -\sin x, \quad \zeta_1(x) = \cos x - i \sin x \] (B.60)
Appendix B: Mathematical Definitions and Identities

Higher order values can be calculated using the recurrence relation

\[\zeta_n(x) = \frac{2n - 1}{x} \zeta_{n-1}(x) - \zeta_{n-2}(x) \]

(B.61)
C

Series Expansion of the Solution of the Spherical Wave Equation

The three dimensional wave or Helmholtz equation

\[\nabla^2 \Pi + k^2 \Pi = 0 \quad (C.1) \]

can be expressed in spherical coordinates as [Kerker, 1969]

\[\frac{1}{r} \frac{\partial^2 (r \Pi)}{\partial r^2} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Pi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Pi}{\partial \phi^2} + k^2 \Pi = 0 \quad (C.2) \]

Using the method of separation of variables, a solution of the form

\[\Pi = R(r) \Theta(\theta) \Phi(\phi) \quad (C.3) \]

is adopted. Substituting this into Equation C.2 and multiplying by \(r^2 / R \Theta \Phi \) gives

\[\frac{r}{R} \frac{\partial^2 (rR)}{\partial r^2} + \frac{1}{\Theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta}{\partial \theta} \right) + \frac{1}{\Phi \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} + r^2 k^2 \sin^2 \theta = 0 \quad (C.4) \]

which can be multiplied by \(\sin^2 \theta \) so that the third term is purely a function of \(\phi \). Separating the equation gives

\[\frac{r}{R} \frac{\partial^2 (rR)}{\partial r^2} + \frac{1}{\Theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta}{\partial \theta} \right) + r^2 k^2 \sin^2 \theta = m^2, \quad (C.5) \]

\[\frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial \phi^2} = -m^2. \quad (C.6) \]

The requirement of a single value solution implies that the solution for \(\Phi \) must have the same value for \(\phi + 2m \pi \) where \(m \) is an integer. Applying this restriction means that the solution for Equation C.6 is

\[\Phi = a_m \cos (m \phi) + b_m \sin (m \phi). \quad (C.7) \]

where \(a_m \) and \(b_m \) are constants.

Equation C.5 can be rewritten as

\[\frac{r}{R} \frac{\partial^2 (rR)}{\partial r^2} + \frac{1}{\Theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta}{\partial \theta} \right) + r^2 k^2 - \frac{m^2}{\sin^2 \theta} = 0 \quad (C.8) \]
so that by introducing a further constant \(p \), it can be separated into

\[
\frac{r}{R} \frac{\partial^2 (rR)}{\partial r^2} + r^2 k^2 = p
\]

\[
\frac{1}{\Theta \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta}{\partial \theta} \right) - \frac{m^2}{\sin^2 \theta} = -p
\]

Substituting \(x = \cos \theta \) reveals that Equation C.10 is the equation for the associated Legendre functions [Abramowitz and Stegun, 1964]

\[
(1 - x^2) \frac{d^2 \Theta}{dx^2} - 2x \frac{d \Theta}{dx} + \left[l(l + 1) - \frac{m^2}{1 - x^2} \right] \Theta = 0
\]

given that \(p = l(l + 1) \) and \(l \) must be an integer in order that the solutions are finite at \(x = \cos \theta = \pm 1 \). The solution of C.10 is then

\[
\Theta = P^m_l(x)
\]

where \(P^m_l \) are the associated Legendre functions. They can be evaluated by means of recursion relationships defined in Appendix B.

The radial expression (Equation C.9) is now expressed as

\[
\frac{\partial^2 (rR)}{\partial r^2} + \left[k^2 - \frac{l(l + 1)}{r^2} \right] rR = 0
\]

and solved by making the substitutions

\[
kr = \rho \quad \text{and} \quad R(r) = \frac{1}{\sqrt{\rho}} Z(\rho)
\]

to obtain the Bessel equation of half integer order

\[
\rho^2 \frac{d^2 Z}{d\rho^2} + \rho \frac{dZ}{d\rho} + \left[\rho^2 - \left(l + \frac{1}{2} \right)^2 \right] Z = 0
\]

The two solutions of this expression are the half integral order Bessel function \(J_{l+1/2}(\rho) \) and the half integral order Neumann function \(N_{l+1/2}(\rho) \). The general solution of Bessel’s equation [Boas, 2006] may be written as

\[
Z(\rho) = AJ_{l+1/2}(\rho) + BN_{l+1/2}(\rho)
\]

where \(A \) and \(B \) are arbitrary constants. The solution of Equation C.9 to be written as

\[
R(r) = \frac{1}{kr} \left[AJ_{l+1/2}(kr) + BN_{l+1/2}(kr) \right]
\]

Choosing different constants \(c_l \) and \(d_l \) defined by

\[
c_l = \frac{A}{k} \sqrt{\frac{2}{\pi}} \quad \text{and} \quad d_l = -\frac{B}{k} \sqrt{\frac{2}{\pi}}
\]
Appendix C: Series Expansion Solution of the Spherical Wave Equation

allows Equation C.17 to be expressed as

\[rR(r) = c_l \sqrt{\frac{\pi kr}{2}} J_{l+1/2}(kr) - d_l \sqrt{\frac{\pi kr}{2}} N_{l+1/2}(kr) \]
\[= c_l \psi_l(kr) + d_l \chi_l(kr) \]

where \(\psi_l(\rho) \) and \(\chi_l(\rho) \) are the Ricatti-Bessel functions which are defined in terms of the Bessel and Neumann functions [Kerker, 1969] by

\[\psi_l(\rho) = \sqrt{\frac{\rho}{2}} J_{l+1/2}(\rho), \]
\[\chi_l(\rho) = -\sqrt{\frac{\rho}{2}} N_{l+1/2}(\rho). \]

Hence

\[rR = c_l \psi_l(kr) + d_l \chi_l(kr) \]

The Ricatti-Bessel functions can be evaluated by means of recursion relationships defined in Appendix B. The functions \(\chi_l(kr) \) become infinite at the origin so can not be used to represent a wave where \(r \) can equal 0.

The general solution of the wave equation in spherical coordinates is obtained from a linear superposition of all the particular solutions

\[r \Pi = r \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \pi_n^m \]
\[= \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left[c_l \psi_l(kr) + d_l \chi_l(kr) \right] P_l^m(\cos \theta) \left[a_m \cos (m\phi) + b_m \sin (m\phi) \right] \]

\[= \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left[c_l \psi_l(kr) + d_l \chi_l(kr) \right] P_l^m(\cos \theta) \left[a_m \cos (m\phi) + b_m \sin (m\phi) \right] \]

(C.24)
References
References

Kattawar, G., S. J. Hitzfelder, and J. Binstock, An explicit form of the mie phase
References

Shannon, C., and W. Weaver, *The Mathematical Theory of Communication*, Univer-
An Atmospheric Radiative Transfer Primer

Index

χ (electric susceptibility), 22
χ_m (magnetic susceptibility), 22
ε (permittivity), 22
ε_0 (permittivity of the vacuum), 18
μ (magnetic permeability), 22
μ_0 (permeability of the vacuum), 18
σ (specific conductivity), 22

k_{abs}, 87
absorption cross-section (σ_{abs}), 74
air molar mass, 3
air parcel, 3
angular frequency, 13
angular wavenumber, 13
averaging kernel, 169

band transmittance, 139
bidirectional reflectance distribution function (f'), 66
bihemispherical reflectance, 67
bihemispherical transmittance, 72
black sky albedo, 67
blackbody radiation, 55
BRDF (bidirectional reflectance distribution function), 66
brightness temperature, 61

column amount, 8
degrees of freedom, 170
differential solid angle (dω), 44
diffuse radiation, 65
direction vector (ω), 44
directional-hemispherical reflectance, 67
directional-hemispherical transmittance, 71
electric susceptibility, 22
emission, 55
emissivity, 61
equation of radiative transfer
 single scattering solution, 128
étendue, 48
exosphere, 6
extended source, 48
extinction cross-section (σ_{ext}), 75
extinction efficiency (Q_{ext}), 75
forbidden transitions, 84
forward function, 158
forward model, 158
 linear, 160, 172
gain matrix, 160
gas bond energies, 81

hemispherical-directional reflectance, 67
hemispherical-directional transmittance, 71
hydrostatic equation, 3
information content, 171
intensity distribution functions, 107
ionosphere, 6
isotropic radiation, 65
least-squares, 161
 including error, 162
magnetic permeability, 22
magnetic susceptibility, 22
magnetosphere, 6
mass absorption coefficient (k_{abs}), 76, 87
mass extinction coefficient (k_{ext}), 76
mass scattering coefficient (k_{sca}), 76
measurement space, 158
measurement vector, 158
mesosphere, 4
Mie theory, 101
penetration depth ($\delta_{\text{penetration}}$), 24
permeability of the vacuum, 18
permittivity, 22
of the vacuum, 18
phase, 13
phase velocity, 14
Photochemistry, 81
photolysis frequency, 81
photolysis rate, 81
Planck function, 55
constants, 58
plane of scattering, 40
polarisation
left- or right-handed, 32
quantum yield, 81
radiant reflectance (f^*), 66
radiation
coherent, 16
monochromatic, 16
Rayleigh scattering, 101
reflectance
bihemispherical, 67
directional-hemispherical, 67
hemispherical-directional, 67
scale height, 4
scattering amplitude matrix, 40, 107
scattering angle, 40
scattering cross-section (σ_{sca}), 74
scattering efficiency (Q_{sca}), 74
selection rule, 84
single scatter albedo (ω), 75
single scattering approximation, 128
skin depth (δ_{skin}), 23
solid angle, 43
specific conductivity, 22