

Application of Singular Value Decomposition to High Spectral Resolution Measurements

Clive D Rodgers

Atmospheric Oceanic and Planetary Physics

University of Oxford

ASSFTS, Quebec 2005

What is this about?

- A spectrum has several thousand elements
- But only a few degrees of freedom for signal (d_s)
- Plus a lot of degrees of freedom for noise (d_n)
- We should be able to represent the useful signal in terms of a few coefficients
- This can be done using singular vectors of a large ensemble of actual spectra

Acknowledgement

- This will be an ill-digested description of a technique I've picked up from the AIRS community
- They are using it to
 - Reduce noise in spectral data
 - Improve the efficiency of retrieval
 - Extract small signals from spectra
 - Data compression

Some Basic Philosophy

- A measurement y is some known function f(x) of a 'state' x, plus measurement error ϵ
- x includes all unknown quantities that affect the measurement
- A retrieval r(y) is some way of finding a state x_r such that $f(x_r)$ is consistent with y
- This leads to a transfer function $x_r = t(x) = r(f(x) + \epsilon)$

Continued...

• $x_r = t(x)$ can be linearised to relate the true state to the retrieval:

$$x_r = x_a + A(x - x_a) + G\epsilon$$

- Knowledge of A and S_{ϵ} evaluated at x_a fully characterises the retrieval
- · Errors are correlated
- We can us SVD to find orthogonal functions of the state that have uncorrelated errors
- But that isn't what I want to talk about today...

What is the best estimate of a spectrum given a measurement?

- This is related to
 - Image enhancement
 - Cleaning up noisy sound recordings
- Forward model is

$$y_m = x + \epsilon$$

x is true spectrum, y_m is measurement, ϵ is noise

Minimum variance estimate of x is

$$\mathbf{x}_{r} = \mathbf{x}_{a} + \mathbf{S}_{a}(\mathbf{S}_{a} + \mathbf{S}_{e})^{-1}(\mathbf{y}_{m} - \mathbf{x}_{a})$$

- If we have a large sample of spectra:
 - Expect that $\mathbf{x}_a = \langle \mathbf{x} + \mathbf{\epsilon} \rangle = \langle \mathbf{y}_m \rangle$
 - Can estimate $S_a + S_{\epsilon}$ from statistics of y_m
 - Should have a good idea of \mathbf{S}_{ϵ}
- But $S_a(S_a+S_{\epsilon})^{-1}$ will be a large matrix, and S_a found from S_a+S_{ϵ} and S_{ϵ} is likely to be ill-conditioned
- S_a is likely to have a 'small' number of eigenvalues greater than noise

Singular Vectors (or Principal Components)

- Let the ensemble of spectra be columns of a matrix Y
- Represent Y as its singular vector decomposition:

$$Y = U \Lambda V^{T}$$

where Λ is diagonal, $U^TU=I$ and $V^TV=I$

• The j'th individual spectrum y_i is then

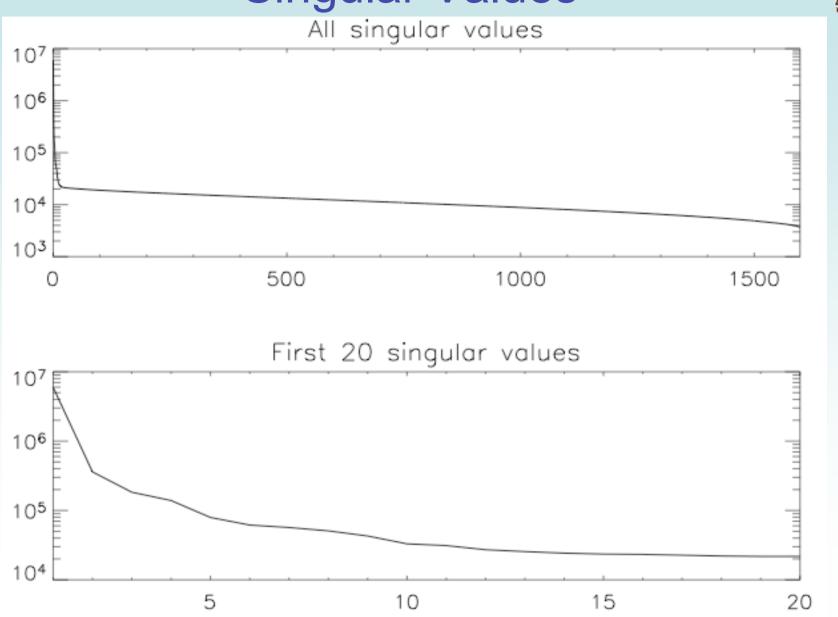
$$\mathbf{y}_{j} = \Sigma_{i} \mathbf{u}_{i} \lambda_{i} \mathbf{v}_{ij}^{T}$$

- The spectrum is represented as a sum of columns u_i of U, with coefficients $\lambda_i v_{ii}^T$.
- Because $\mathbf{U}^{\mathsf{T}}\mathbf{U}=\mathbf{I}$, we can compute $\lambda_{i}\mathbf{v}_{ij}^{\mathsf{T}}$ for any spectrum as $\mathbf{U}^{\mathsf{T}}\mathbf{y}_{j}$.

Example from TES

- Run 2147, Sept 20-21 2004
- A set of nadir spectra
- First 100 observations of the day
- · Each of 16 pixels, 1600 spectra in total
- Filter 1B2, 923 to 1160 cm⁻¹

Singular Values



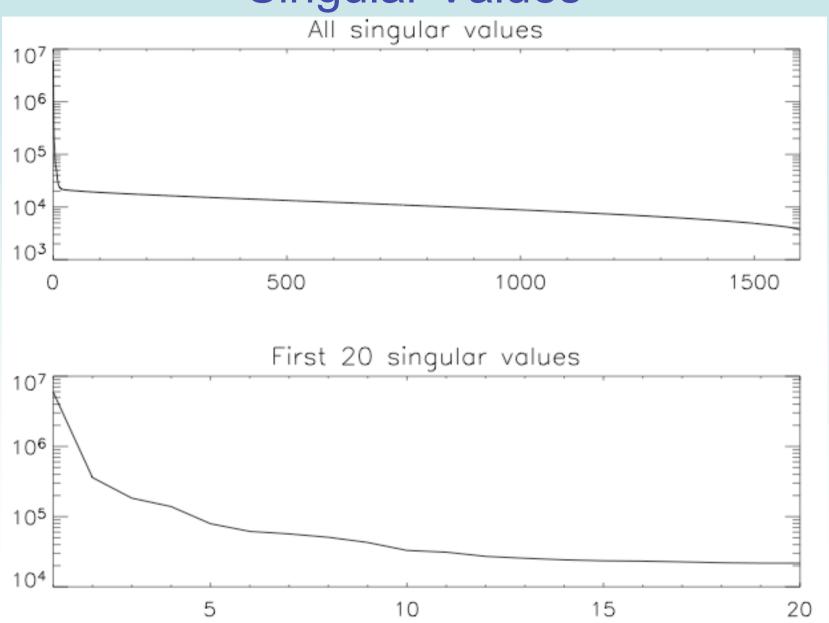
What do we expect?

- Singular vectors are the same as eigenvectors of $\mathbf{Y}\mathbf{Y}^\mathsf{T}$, singular values are the square roots of its eigenvalues
- YY^T is the covariance matrix of the spectra
- In the linear case with independent constant noise, this would be

$$S_v = KS_aK^T + \sigma_e^2 I$$

- KS_aK^T has rank $\leq n$, I is of dimension m >> n
- Eigenvalues of S_y are λ_i^2 + σ_{ε}^2 where λ_i^2 are the eigenvalues of KS_aK^T

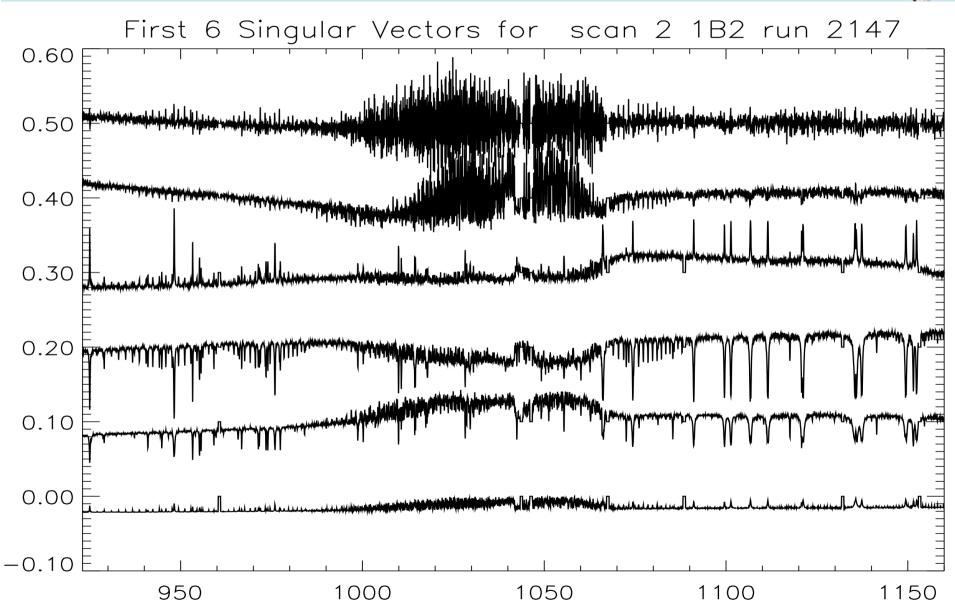
Singular Values



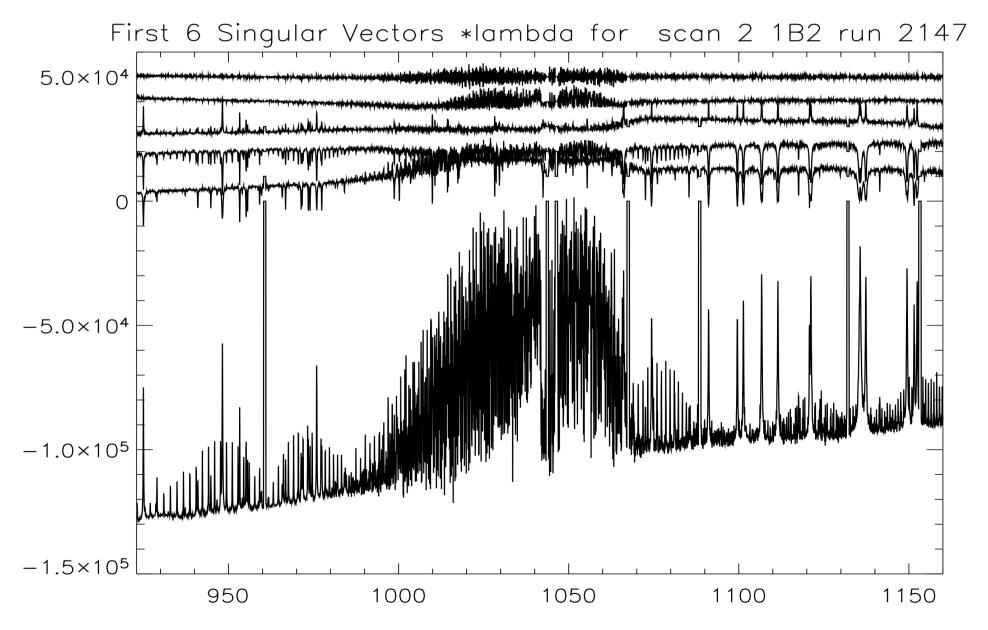
Reconstructing Spectra

- We can drop terms with $\lambda_i << \sigma_\epsilon$ without significant loss
 - they correspond to noise only
 - Better, multiply retained terms by something like $\lambda_i^2/(\sigma_{\epsilon}^2 + \lambda_i^2)$
- So spectra can be reconstructed from the first few coefficients.
- The noise can be reconstructed from the rest...
- · Reconstructed spectra have much reduced noise

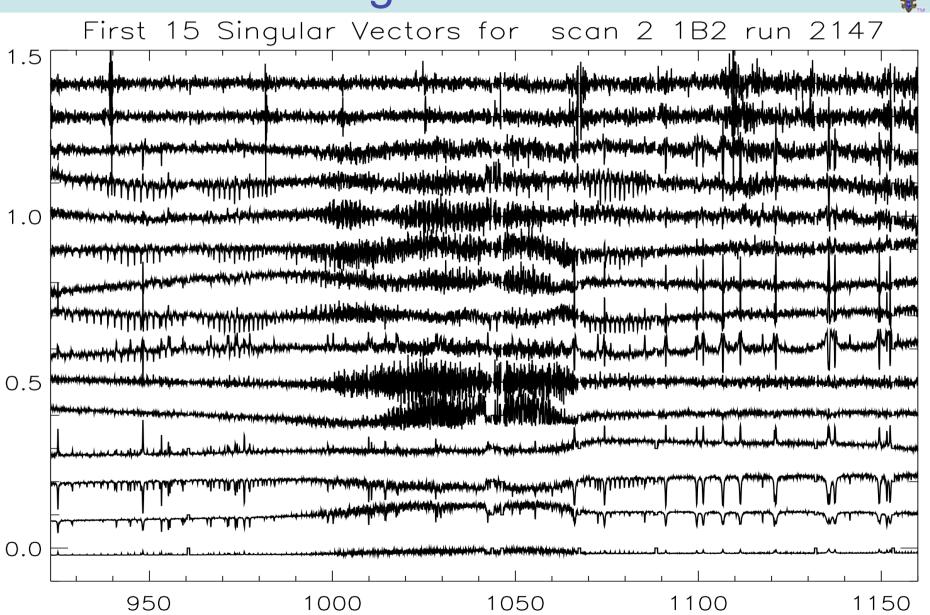
Singular Vectors



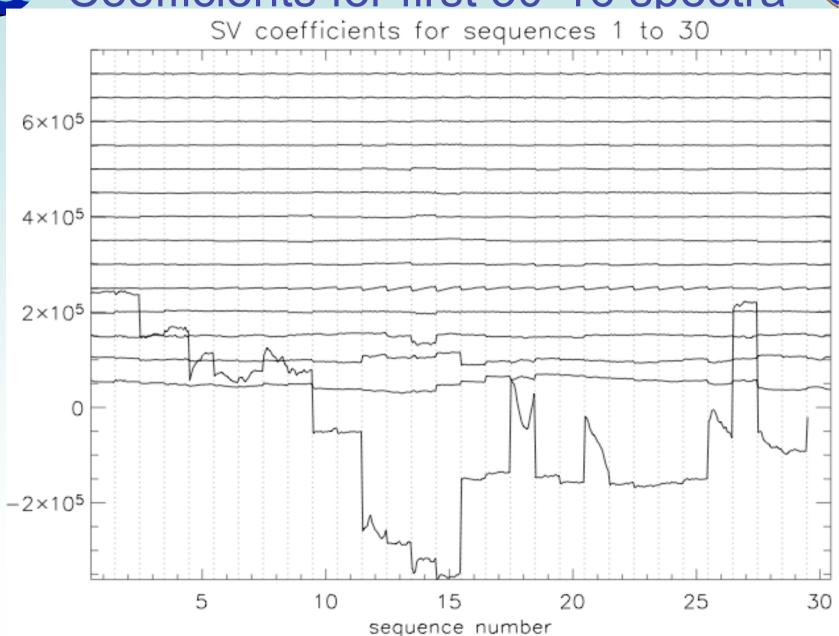
Singular vectors * Lambda



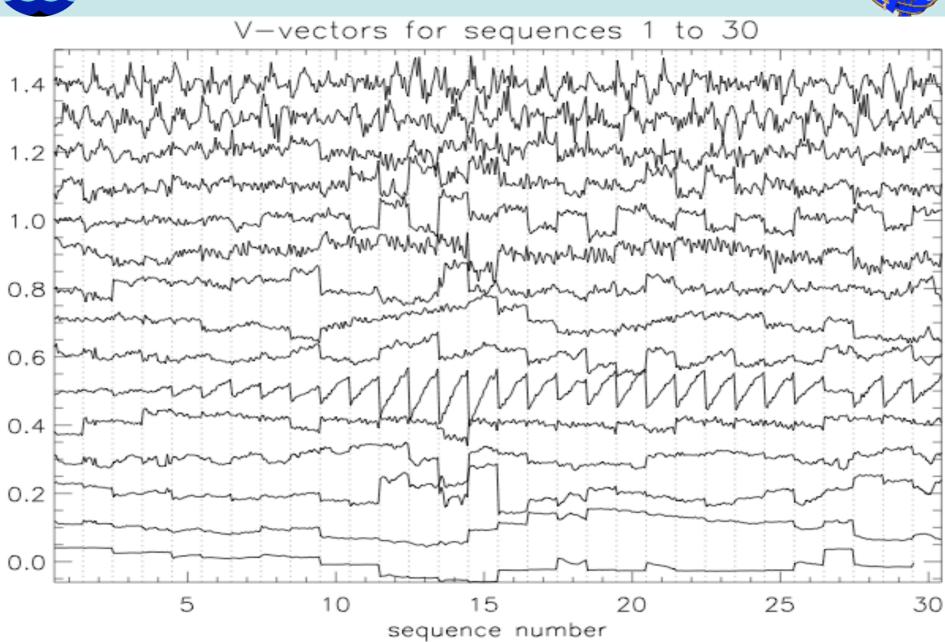
Singular Vectors



Coefficients for first 30*16 spectra



V-vectors



Features

Most of variation is in the first singular vector.
 First six are:

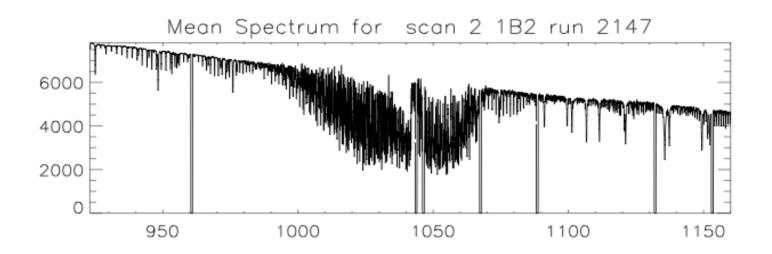
 $5.96 \times 10^6 \ 3.6 \times 10^5 \ 1.83 \times 10^5 \ 1.39 \times 10^4 \ 7.93 \times 10^4 \ 6.16 \times 10^4$

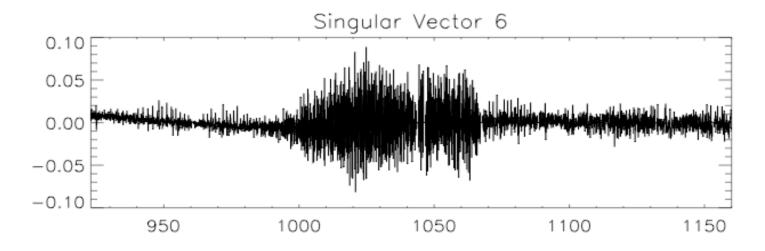
- · Data spikes identified
- · Data spikes unidentified
- Pixel-dependent variation in the spectra

Singular Vector 6

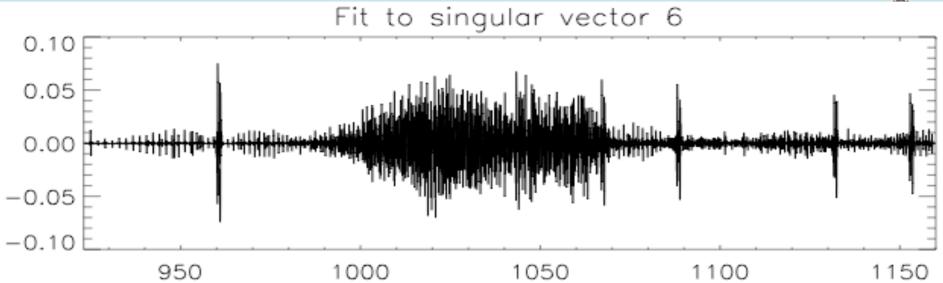
- Systematic variation across the detector array
- Must be an artifact
- Suggests systematic error in ILS
- How is it related to mean spectrum?
- Least squares fit to find function that when convolved with mean spectrum gives SV6

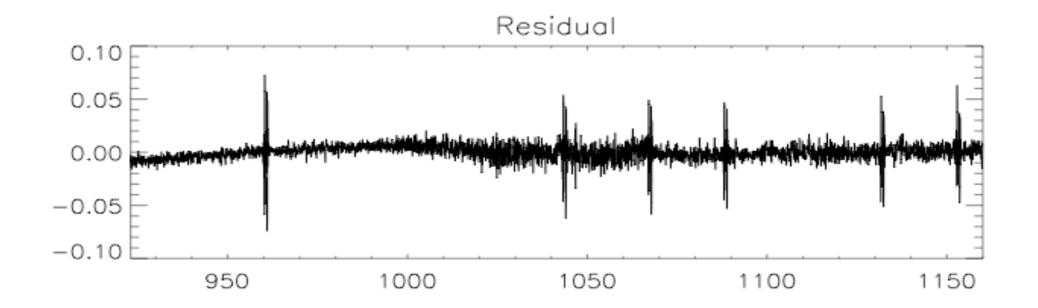
SV6



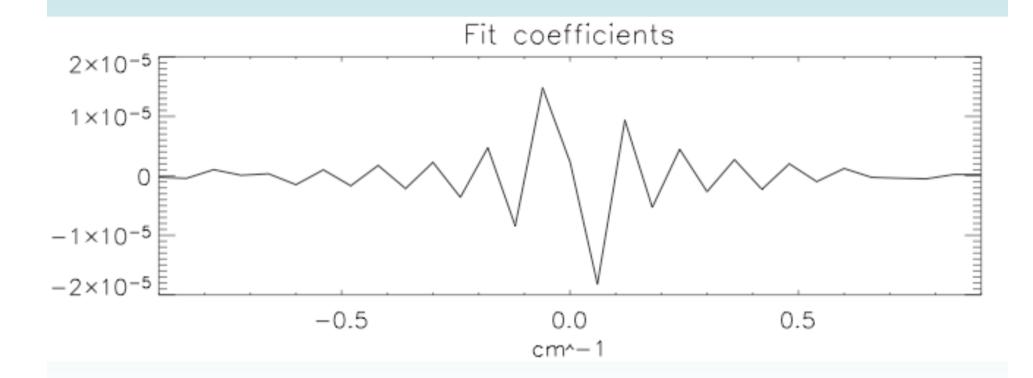


SV6



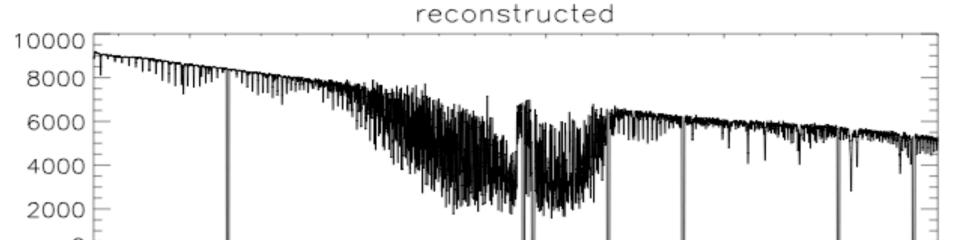


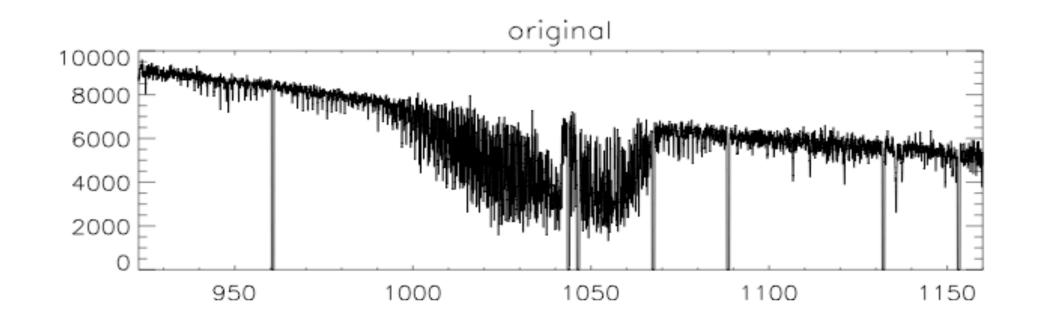
SV6



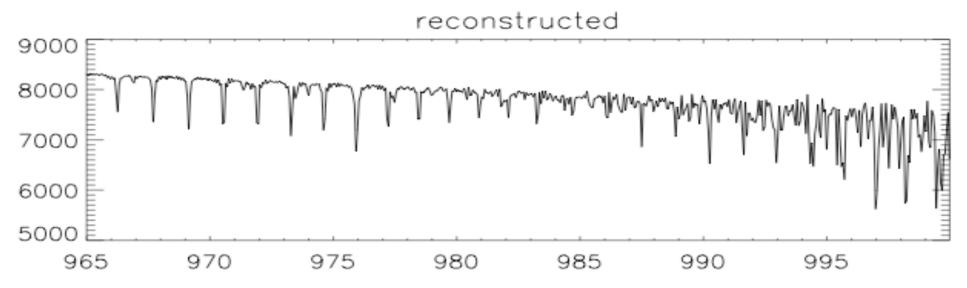
Suggests the derivative of the ILS

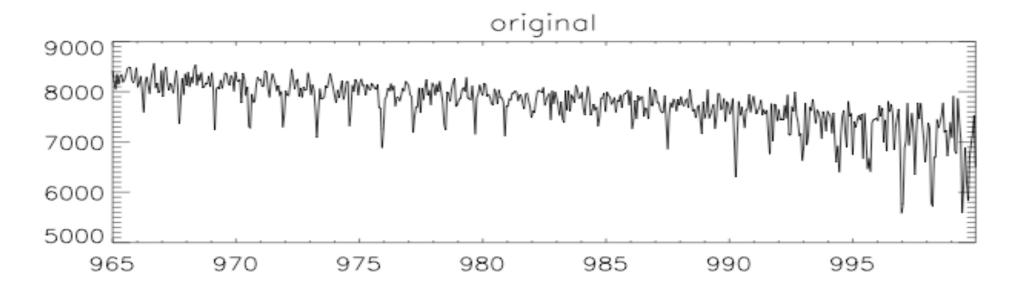
QOPP Example spectrum reconstructed from 20 vectors





Example spectrum reconstructed from 20 vectors





What use is it?

- Singular vectors
 - To some extent they separate out different sources of variability
 - Atmospheric quantities
 - Artifacts in the data
- Reconstructed Spectra
 - Validation: you can see better what is going on
 - Identify artifacts
 - Retrieval from cleaner spectra
- · Reconstructed Noise
 - Noise characteristics spectrum, correlations, etc
 - Artifacts

Precautions

- Need a lot more spectra than I have used in this example
- If retrieving from reconstructed spectra, you need to pay attention to error analysis and correlations:
 - the error in the reconstructed spectrum is correlated in channel number

Rough Error Analysis

Singular Vectors

- Each vector is a combination of n (~1600) spectra
- Each λu will have noise $\sim n^{-\frac{1}{2}}$ smaller
- Reconstruction with p (~20) coefficients will have noise from this source ~ $(p/n)^{\frac{1}{2}}$ smaller from this source.
- White noise, but correlated between spectra

Reconstruction coefficients

- Each coefficient will have an error around $m^{-\frac{1}{2}}$ smaller than spectrum
- Reconstruction will have noise $\sim (p/m)^{\frac{1}{2}}$ smaller from this source.
- A random combination of singular vectors, so correlated spectrally

Retrieval from Reconstructed Spectra

- The reconstructed spectrum has p (~20) degrees of freedom
- Its error covariance has rank p, and is singular
- A profile could in principle be retrieved from the p coefficients of the representation
 - if we had a forward model for the coefficients
- The obvious model, to apply the singular vectors to the complete simulated spectrum, would be very expensive

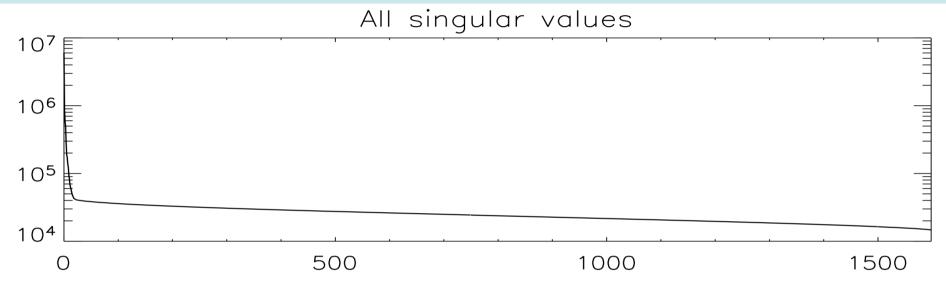
However...

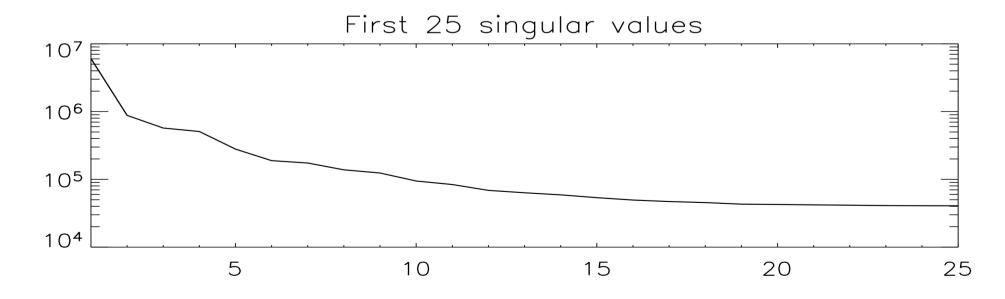
- The spectrum could in principle be rereconstructed from just p spectral elements
- These p elements alone could be used to retrieve a profile
- An automated microwindow/channel selection process should stop finding more information after p elements have been selected.
- I havn't tried this yet...

Conclusion

This is a tool that I think is going to be very useful

Limb Spectra Singular Values





Limb Singular Vectors

