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Abstract

A summary of calculations and assumptions used
to derive expressions for cloud droplet number con-
centration (CDNC) and cloud physical thickness.

1 Definitions

Consider a cloud that extends1 from a height z = 0
to H containing droplets that conform to a size
distribution n(r, z). The CDNC is defined as,

Nd(z) =

∫ ∞
0

n(r, z) dr. (1)

Based on in situ observations, this is assumed to be
constant with height (neglecting the small regions
of deviation near the edges of the cloud).

Satellite remote sensing determines the optical
thickness of the cloud,

τc =

∫ H

0

βext(z) dz, (2)

where the extinction of the droplets is,

βext(z) =

∫ ∞
0

Qext(r)n(r)πr2dr (3)

= πQ

∫ ∞
0

r2n(r) dr (4)

≡ πQ〈r2〉, (5)

where Qext is the extinction efficiency of droplets,
which has been assumed to have constant value

1For simplicity, we will assume there is negligible scatter-
ing outside of the cloud.

Q = 2 because r � λ (the wavelength of obser-
vation), and we introduced the notation,

〈f〉 =

∫ ∞
0

fn(r) dr. (6)

Satellite remote sensing also determines the ef-
fective radius of the cloud,

re = 〈r3〉/〈r2〉. (7)

Also relevant are the volume mean radius,

rv = 3
√
〈r3〉/Nd, (8)

and liquid water content,

l(z) = 4
3πρw〈r

3〉, (9)

where ρw is the density of water.

2 Lapse rates

2.1 Dry air

The first law of thermodynamics states that,

dQ = CvdT + pdV, (10)

where Q is the parcel’s internal energy, Cv is its
heat capacity at constant volume, T is tempera-
ture, p is pressure, and V is volume. An adiabatic
change of the parcel is one that conserves the in-
ternal energy such that,

CvdT = −pdV. (11)

Differentiating the ideal gas law,

pdV + V dp = MRa dT (12)

V dp = (MRa + Cv) dT (13)

= CpdT (14)
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where Ra is the specific gas constant of dry air,
M is the mass of the parcel, and Cp is the heat
capacity at constant pressure.

For an atmosphere in hydrostatic balance, the
dry adiabatic lapse rate is then,

−dT

dz
= −dT

dp

dp

dz
(15)

Γd = − V

Cp
(−ρg) (16)

=
g

cp
, (17)

where ρ is the density of air, g is gravitational accel-
eration, and the switch to a lower-case c indicates
specific heat capacity.

2.2 Moist air

The saturation vapour pressure of water, es, can
be calculated from the Clausius-Clapeyron equa-
tion, but several approximations have been pro-
posed. Ed Gryspeerdt (personal communication,
2022) used the formulation of the Magnus equation
proposed in Alduchov and Eskridge (1995),

es(T ) = 610.97 exp

(
17.625T

T + 243.04

)
Pa, (18)

where T is in Celsius. In the same units, the latent
heat of vaporization can be written,

L(T ) = (2501 + 1.86T ) kJ kg−1. (19)

However, that paper describes (18) as the “sat-
uration vapor pressure of pure water vapor over a
plane surface of water”. For “moist air above a
plane surface of water”, which sounds more appro-
priate to our circumstances, they recommend the
adjustment,

esa(T, p) = 1.00071 exp
(
4.5× 10−8p

)
eS(T ). (20)

The curved surface of the droplets also affects the
vapour pressure according to Kelvin’s equation,

esc(T, r) = es(T ) exp

(
2σ

nLRTr

)
, (21)

where σ ' 0.0756 J m−2 is the surface tension of
water and nL is the number of moles of liquid

present. This is not yet included in the remainder
of this proof.

Other approximations for es are available that
may be more accurate for boundary layer clouds,
as Alduchov and Eskridge (1995) concentrated on
finding a forumla accurate over [−40, 50◦C].

For a parcel saturated with water vapour, we ap-
proximate the equation of state as,

(p− es)V = MRaT, (22)

and make the pseudo-adiabatic approximation that
the only change in internal energy is due to latent
heat,

dQ = −LMdµs, (23)

where the saturation mass mixing ratio of water is,

µs =
εes(T )

p− es(T )
, (24)

where ε ' 0.622 is the ratio of the molecular masses
of water vapour and moist air.

Differentiating the log of that,

dµs
µs

=
p

p− es
des
es
− dp

p− es
(25)

=
p

p− es
LdT

RvT 2
+
g dz

RaT
, (26)

having substituted the first term on the RHS for
the Clausius-Clapeyron equation (assuming vapour
is substantially more voluminous than liquid) and
the second term for hydrostatic balance of dry air.
Note that Rv = Ra/ε is the specific gas constant
for water vapour.

Substituting (26), (23) and (12) into (10) for a
hydrostatic atmosphere,

0 = cpdT + gdz + Ldµs (27)

=

(
cp +

p

p− es
L2µs
RvT 2

)
dT + g

(
1 +

Lµs
RaT

)
dz

(28)

Hence, the moist adiabatic lapse rate is,

−dT

dz
= g

1 + Lµs

RaT

cp + p
p−es

L2µs

RvT 2

(29)

Γm = Γd

[
1 +

Lεes
RaT (p− es)

]
(30)[

1 +
L2ε2pes

cpRaT 2(p− es)2

]−1
(31)
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2.3 Vertical gradient of vapour

Dividing (27) by dz,

−Ldµs
dz

= cp
dT

dz
+ g (32)

−dµs
dz

=
cp
L

(Γd − Γm) . (33)

3 CDNC

3.1 k-ratio

Assume that, within stratocumulus clouds, the ra-
tio of re to rv is approximately constant such that,

k =

(
rv
re

)3

=
〈r3〉
Ndr3e

(34)

〈r3〉 = kNdr
3
e . (35)

This assumptions follows from the cloud droplets
conforming to a gamma distribution n(r) =
N0r

(1−3ve)/ve exp(−r/reve), for which k = (1 −
ve)(1 − 2ve) where ve is the effective variance of
the distribution. Grosvenor et al. (2018) (here-
after G18) mentions values between 0.67 and 0.88
are used, though the ratio has been observed to
vary with height in a manner inconsistent with the
simple deposition process expected. MODIS and
ORAC assume that ve = 0.111 such that k = 0.692.

3.2 Sub-adiabatic lift

We then assume that the liquid water content is
some constant fraction fab of its adiabatic value,

l(z) ≡ 4
3πρw〈r

3〉 = fabcwz, (36)

where cw is the gradient of water mixing ratio with
height.

G18 states that fab varies between 0.1 and 0.9,
with adiabaticity suppressed by entrainment and
precipitation. The value has been explored in situ
and by systematic radar studies. It is widely as-
sumed that fab = 0.66 or 0.67.

The condensation rate is derived from (33),

cw = −ρdµs
dz

=
cp(p− es)
LRaT

(Γd − Γm) (37)

G18 asserts that ignoring the vertical variations
in cw produce errors of a few percent and, interest-
ingly, implies that errors from using atmospheric

pressure from reanalysis to represent that variation
are larger than that.

3.3 Integration

Combining (35) and (36),

z =
4πρwkNd

3fabcw
r3e . (38)

Combining (2), (5), and (35),

τc = πQ

∫ H

0

〈r2〉dz (39)

= πQ

∫ H

0

〈r2〉
〈r3〉
〈r3〉dz (40)

= πQ

∫ H

0

kNdr
2
e dz. (41)

Changing the variable of integration to re and not-
ing that we have assumed everything other than it
is constant through the depth of the cloud,

τc = πQ

∫ H

0

kNdr
2
e

4πρwkNd
fabcw

r2e dre (42)

=
Qk2N2

d4π2ρw
fabcw

r5e(H)− r5e(0)

5
(43)

=
4π2k2N2

dQρwr
5
e

5fabcw
(44)

where we have assumed that re(0) � re(H) and
dropped its dependence on H as the satellite only
provides effective radius near cloud top.

Rearranging,

Nd =
1

2πk

√
5fabcwτc
Qextρwr5e

. (45)

Quaas et al. (2006) implements this, citing Bren-
guier et al. (2000), as,

Nd = α0τ
0.5
c r−2.5e , (46)

where α follows from evaluating (45) at 850 hPa
and 280 K with fab = 1,

es(280) = 610.94 exp

[
17.625× 6.85

6.85 + 243.04

]
= 990.4 Pa
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Γd =
9.81

1.004× 103

= 9.771× 10−3 K m−1

Γm(280, 85000) = 9.771× 10−3×[
1 +

2.501× 106 × 0.622× 990.4

287.04× 280× 84010

]
/[

1 +

(
2.501× 106 × 0.622

280× 84010

)2

8.5× 105 × 990.4

1.004× 103 × 287.04

]
= 5.269× 10−3 K m−1

cw(280, 85000) =
1.004× 103 × 84010

2.501× 106 × 287.04× 280

× (9.771− 5.269)× 10−3

= 1.889× 10−6 kg m−4

α0(280, 85000) =
1

2π × 0.80

√
5× 1× 1.889× 10−6

2× 103

= 1.367× 10−5 m−1/2.

3.4 Temperature dependence

Gryspeerdt et al. (2016) adds a temperature-
dependent correction such that,

α(T ) = (0.0192T − 4.293)α0. (47)

Personal communication with Ed revealed that it
was calculated by assuming that, as temperature
decreases, the saturation vapour pressure drops and
the residual vapour condenses into droplets with
gradient,

cw(T ) ' fab
RvT

des
dT

dT

dz
, (48)

but the value of k was mistakenly2 used for fab.
The derivative of es was calculated by finite differ-
ence and he used an approximate expression for Γm
whereby L(T ) is constant and in (26) one assumes
es � p. The final values were found using a linear
fit to cw in the range [270, 300] in 1 K steps.

2Though 0.8 is a plausible value for fab is isn’t the most
common.

Alternatively, a linearisation of α may also be
obtained via a Taylor expansion,

α(T, p) ' α(T0, p0) + (T − T0)
dα

dT

∣∣∣∣
T=T0,p0

+ (p− p0)
dα

dp

∣∣∣∣
T0,p=p0

+ . . . (49)

(45) can be written as,

N2
d =

5fabgε

4π2k2QextρwRa

τc
r5e

es(p− es)
T

εLp− (p− es)cpT
Racp(p− es)2T 2 + ε2L2pes

. (50)

The total derivative of the log of that is,

2
dNd
Nd

= dT

[
1

T
+
cp(p− es)

D0
+

2Racp(p− es)2T
D1

]
+des

[
1

es
− 1

p− es
+
cpT

D0

+
2Racp(p− es)T 2 − ε2L2p

D1

]
+dL

[
εp

D0
− 2ε2Lpes

D1

]
+dp

[
1

p− es
+
εL− cpT

D0

−2Racp(p− es)T 2 + ε2L2es
D1

]
,

(51)

where D0 = εLp − (p − es)cpT , D1 = Racp(p −
es)

2T 2 + ε2L2pes and

des
dT

=
BCes

(T − 273.15 + C)2
, (52)

where B,C are the constants in the numerator and
denominator of (18), respectively.

For the same assumptions as (47), namely fab =
1 and dL

dT = 0, linearising the above around 275 K
and 850 hPa gives,

α(T ) = (0.0145T + 2.817× 10−6p− 3.2314)

× 1.282× 10−5 m−1/2. (53)

This confirms the frequent assertion that α varies
weakly with pressure.
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Using fab = 0.66, k = 0.692, (19) and (20)

αORAC(T ) = (0.0145T − 3.001)

× 1.205× 10−5 m−1/2. (54)

3.5 Thickness

The physical thickness of the cloud can be derived
by using l(H) to replace πkNd in (44),

τc =
4Qρwr

5
e

5fabcw

(
3fabcwH

4ρwr3e

)2

(55)

=
9QfabcwH

2

20ρwre
(56)

H =

√
20ρwτcre
9Qfabcw

. (57)

This is (4) of Meerkötter and Zinner (2007), with
Qext = 2 and fab = 1.

Alternatively, one can find the liquid water path,

LWP =

∫ H

0

l(z) dz (58)

=

∫ H

0

fabcwz dz (59)

= 1
2fabcwH

2 (60)

H =

√
2LWP

fabcw
. (61)

Comparing the two expression, we arrive at the
sub-adiabatic expression for liquid water path,

LWP =
10

9Q
ρwτcre. (62)

If re is instead assumed to be constant with
height, the homogenous expression for liquid wa-
ter path is recovered,

LWP =

∫ H

0

4

3Q
ρwreβext dz =

4

3Q
ρwτcre. (63)
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