
Validation and inter-comparison of a novel Atmospheric Correction Method

Project number: AO10
Candidate number: 1046002

Supervisors: Dr R. Song and Professor R. G. Grainger

Abstract

The Sensor Invariant Atmospheric Correction (SIAC) module is a recently developed atmospheric correction
module utilising a Bayesian framework to provide surface reflectance data from high resolution remote sensing
measurements. Here, SIAC is applied to data acquired by the Sentinel-2 (S2) satellites, in order to investigate
the accuracy of its atmospheric corrections over different landscapes, specifically forests, deserts, and urban
areas. SIAC retrieved aerosol optical thickness (AOT) values are compared to ground measurements from Aerosol
Robotic Network (AERONET) detectors. SIAC retrieved surface reflectance values are compared to S2-equivalent
surface reflectance values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). SIAC AOT
and surface reflectance retrieval performance is found to be encouraging, particularly with regards to surface
reflectance. AOT retrievals are more effective in areas where the surface reflectance is lower, with results meeting
target uncertainty thresholds for one forest detector (71.7% of points within target uncertainties) and coming
close for another forest detector (64.1%). AOT retrieval accuracy is decreased over brighter areas with only
30.9% and 45.2% of points within the target limits for two desert detectors, and 25.0% for an urban detector.
However, this appears to be corrected in the surface reflectance retrieval with SIAC matching MODIS values to
a reasonable degree of accuracy, with 50.0% of points across three visible bands lying within target uncertainty
limits for an area of forest, 59.5% of points for an area of desert and most points matching seasonal trends in the
reference data.

1 Introduction

Earth Observation (EO) satellites play a crucial role in
monitoring the behaviour of Earth’s atmosphere and sur-
face. Each satellite is fitted with one or more instruments
that make measurements of electromagnetic radiation
as it orbits Earth. Observations of visible wavelengths
are made to calculate the reflectance of Earth’s surface,
which is used widely including to calculate Earth’s ra-
diation budget (the balance of incoming and outgoing
radiation), monitor crops to detect disease and water
stress, and survey deforestation. In order to obtain ac-
curate readings of Earth’s surface, the interactions be-
tween the signal (in this case visible light) and the atmo-
sphere need to be accounted for: the most significant ef-
fects are scattering and absorption by aerosols (any small
solid particle suspended in the atmosphere) and water
vapour [1]. ‘Atmospheric correction’ (AC) modules are
used to derive the required reflectance data at Earth’s
surface (bottom-of-atmosphere, BOA) from the satellite
measurements made at the top of the atmosphere (top-of-
atmosphere, TOA). Typically, an AC module estimates
the aerosol optical thickness (AOT, the additional op-
tical path light travels through due to the presence of
aerosols) and total columnar water vapour (TCWV, the
amount of water that could precipitate out of a vertical
column of the atmosphere) and uses these parameters
as inputs in a radiative transfer model, which calculates
BOA reflectance data from the predicted attenuation of
the TOA signal. Variation in the estimated AOT has a
significant impact on the output of the radiative transfer
model, and so it is important for the AC module’s AOT
retrieval to be accurate [1]; this work is an evaluation

of the performance of the AOT retrieval of the SIAC
AC module. In all previous work investigating SIAC’s
AOT retrievals, no comparisons have been made between
SIAC’s effectiveness when applied to satellite observa-
tions across varying surface types, so this work analyses
how SIAC AOT retrieval performance differs dependent
on the surface cover and land use of the observed region.

SIAC is designed for use with the high resolution
Sentinel-2 (S2) and Landsat-8 (L8) EO satellites. It uses
well verified BOA surface reflectance data from MODIS,
derived at a 500m resolution in sinusoidal projection (a
projection is a geometric mapping of Earth’s surface into
2D, a sinusoidal projection preserves area but distorts
shapes), and compares this to S2/L8 TOA data trans-
formed to the same 500m resolution sinusoidal projec-
tion. A 6S (Second Simulation of a Satellite Signal in the
Solar Spectrum) radiative transfer model is used to con-
vert the MODIS BOA data into TOA data to match the
S2 data. SIAC updates the AOT and TCWV values used
in the radiative transfer model to solve for an optimal es-
timate, then applies this to high resolution TOA S2/L8
data to retrieve high resolution BOA surface reflectance
data. SIAC utilises Copernicus Atmosphere Monitoring
Service (CAMS) aerosol values (at 40 km resolution) as
priors in the minimisation problem. SIAC differs from
other AC modules through its use of MODIS and CAMS
datasets as priors, and its ability to give per-pixel uncer-
tainty values through its Bayesian probabilistic frame-
work. Furthermore, by applying an identical method to
both S2 and L8 data, SIAC introduces the possibility
of combining their results to provide greater temporal
resolution of corrected observations.
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Previous work demonstrates the good performance of
SIAC AOT retrievals when ignoring variation across sur-
face types [2], whilst comparisons have been made be-
tween the accuracy of retrievals from SIAC and other
AC modules [3]. Previous work has also shown that
the Sen2Cor AC module, which is currently widely used
with S2 data, exhibits poor AOT retrieval results [4];
SIAC aims to provide more accurate atmospheric correc-
tions for S2 data. This work is an in-depth investigation
of SIAC’s AOT retrieval performance across varied sur-
face types; the approach is to compare SIAC retrieved
AOT values with measurements made a ground level by
AERONET detectors. Preliminary results are also ob-
tained comparing SIAC retrieved surface reflectance val-
ues with equivalent MODIS retrievals. The data used in
these analyses are introduced in Section 2, whilst Sec-
tion 3 describes how the comparisons were made. The
key AOT comparison results are presented and discussed
in Section 4; surface reflectance comparison results are
given and explained in Section 5. A summary of this
work, and directions of potential further study are given
in Section 6.

2 Datasets

2.1 Sentinel-2

S2 data is recorded by filter radiometers (instruments
that measure incident radiation in a narrow spectral
band) on two EO satellites (S2A and S2B), measuring
13 spectral bands from 443 nm to 2194 nm. Both satel-
lites are in the same Sun-synchronous orbit, phased by
180◦, in order to provide a five day revisit frequency at
the Equator [5]; the Sun-synchronous orbit means that
the satellites always pass surface positions at the same
local time, giving consistency to observations. The S2
satellites provide high resolution measurements, at 10,
20, or 60m resolution depending on the spectral chan-
nel, meaning that BOA reflectance values derived from
S2 observations are desirable as an improvement to, for
example, the lower resolution MODIS data. Data is pro-
vided in ‘tiles’ which are 110 km by 110 km regions of
a UTM/WGS84 projection, which preserves angles and
shapes but distorts area.

2.2 MODIS

MODIS is a filter radiometer currently in orbit on two
sun-synchronous satellites, Aqua and Terra, which have

different orbital paths and between them image the whole
Earth every 1-2 days [6]. Data is obtained across 36
spectral bands ranging from 413 nm to 14.2 µm; land
properties are typically investigated using 7 bands cov-
ering 469 nm to 2130 nm. MODIS data has been verified
through multiple studies to agree with ground measure-
ments, so can be assumed to give accurate results [7, 8,
9, 10]. Data are available in multiple different forms,
of interest here is the Bidirectional Reflectance Distribu-
tion Function (BRDF) product (MCD43A1)1, which de-
scribes surface reflectance as a function of incoming and
outgoing radiation directions (the solar and view angles
respectively). MCD43A1 data is produced in 1200 km by
1200 km tiles, using a sinusoidal projection, with a 500m
resolution.

2.3 AERONET

AERONET detectors are ground-based sun photometers
that provide accurate measurements of AOT2. The mea-
surements are available in three quality control levels, of
which the highest quality is used here to provide the most
reliable data, with a measurement error of 0.01 assumed
on all AERONET AOT readings [11]. Detectors are ran-
domly distributed worldwide; for this study sites were
selected based on the land use and homogeneity of sur-
rounding surface cover and the availability of AERONET
data. The surface type was assessed using the Copernicus
Land Monitoring Service’s Global Land Cover map3 and
Table 1 details the chosen AERONET detectors. Case
studies 1 and 2 have detectors located in forested areas
in the Amazon and Pacific Northwest respectively. Case
study 1 is surrounded by forest to beyond 50 km whilst
Case study 2 is within roughly 20 km of farmland and
urban areas. The detectors for Case studies 3 (Mongo-
lia) and 4 (Israel) are both located within small urban
areas but are largely surrounded by arid desert with little
vegetation. Case study 5 is located near central Beijing,
with a 10 km wide strip of forest at around 20 km from
the detector.

AERONET measurements are made at wavelengths
of 340, 380, 440, 500, 675, 870, 1020, and 1640 nm (mean-
ing the detectors determine the optical path, caused by
aerosols, at these wavelengths), whilst SIAC solves the
AOT at 550 nm. Following Kaufman [12], a second order
polynomial is fitted to log-transformed AERONET data,
allowing interpolation to AOT at 550 nm, giving a direct
comparison with SIAC AOT data.

1https://lpdaac.usgs.gov/products/mcd43a1v061/
2https://aeronet.gsfc.nasa.gov/
3https://land.copernicus.eu/global/products/lc

Surface Type AERONET Detector Latitude (◦) Longitude (◦) S2 Tile

Case study 1 Forest Amazon ATTO Tower −2.14 −59.00 21MTT

Case study 2 Forest NEON WREF 45.82 −121.95 10TER

Case study 3 Bare/Sparse vegetation (desert) Dalanzadgad 43.58 104.42 48TVP

Case study 4 Bare/Sparse vegetation (desert) Sede Boker 30.86 34.78 36RXV

Case study 5 Built-up (urban) Beijing-CAMS 39.93 116.32 50TMK

Table 1: Selected AERONET detectors, the surrounding surface type, their coordinates, and corresponding Sentinel-2 tile
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Figure 1: Plots of RGB (a), with bands at 665 nm, 560 nm and 490 nm, and AOT (b), measured at 550 nm, S2 data showing Case study 1, the
Amazon ATTO Tower detector, location and a radius of 10 km around it, on 31/07/2020

3 Methodology

3.1 AOT comparison

After applying SIAC to S2 scenes for the relevant tiles,
SIAC retrieved AOT values are compared with ground
measurements from a variety of AERONET detectors.
SIAC estimates AOT values at a 500m spatial resolu-
tion, and its data should be averaged over multiple pix-
els to reduce random errors, whilst each AERONET de-
tector makes measurements at a single stationary loca-
tion, so the spatial variation of AOT needs to be con-
sidered. In studies comparing satellite-retrieved values
with surface-measured values, satellite data is typically
averaged across all ‘clean’ pixels within a predetermined
distance from the ground detector. Previous work sug-
gests that a radius of around 30 km is optimal for AOT
comparison [13], therefore this work considers radii of
this order: for each location SIAC pixel values are av-
eraged within radii ranging from 1 km to 50 km in 1 km
increments. For each radius a linear fit is calculated,
representing the relationship between the SIAC averaged
values and AERONET measurements across all S2 im-
ages of that Case study. The variation of root mean
square error (RMSE) of the linear fit with radius is then
considered in order to determine the optimum radius for
AOT comparison for that Case study. At this radius
the performance of SIAC is evaluated, with the optimal

result being a one-to-one relationship between the SIAC-
retrieved and AERONET-measured AOT values.

There is temporal variation between the SIAC and
AERONET data, as SIAC provides measurements once
every few days while AERONET records readings every
15 minutes (with occasional large gaps in the dataset).
Following standard practice (as in [13]) for similar com-
parison work, AERONET readings within ±30 minutes
of the S2 overpass are selected and averaged to compare
to SIAC. A minimum of 3 AERONET readings in this
time period is required, to reduce measurement errors.

As part of its processing, SIAC produces a cloud mask
giving the probability of each pixel having cloud cover (at
a 60m resolution). In this work only scenes where more
than 50% of the pixels were cloud free are considered,
where a cloud free pixel is defined as having less than a
20% probability of being cloudy.

There is a generally accepted target that newly devel-
oped AC modules aim to achieve in their AOT retrievals:
reaching a threshold uncertainty value of δAOT = 0.05 +
0.15AOT [3]. For SIAC to meet this threshold, 68% of
its AOT retrieval values should lie within this range cen-
tered on the reference (AERONET) values.

For the purposes of this work, bias is defined as

B =
1

n

i=n∑
i=1

xSIAC − xref , (1)

Figure 2: Linear ODR fit RMSE (a) and SIAC bias (b) as a function of the radius used for SIAC averaging, for Case study 1, the Amazon ATTO
Tower detector. Using data from 39 images from 27/06/2016 to 13/12/2020
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Figure 3: RGB (a) and AOT (b) plots from S2 data for Case study 2, the NEON WREF detector, on 21/06/2021

where n is the number of images analysed, and xSIAC

and xref are the values retrieved by SIAC and the refer-
ence dataset of the required quantity.

3.2 Surface reflectance comparison

SIAC retrieved surface reflectance values in red, green
and blue (RGB) visible bands, centered on 665 nm,
560 nm, and 490 nm respectively, were compared with
equivalent values derived from the MODIS BRDF prod-
uct, which has RGB bands centered on 645 nm, 555 nm,
and 469 nm. Typically, different satellites make observa-
tions at different view angles (characterised by the az-
imuthal and zenith angles of the satellite relative to the
scene) so inter-comparisons of this kind need to account
for the effects of different viewing geometries. S2 satellite
instruments make measurements at a single view angle,
whereas MODIS collates measurements over 16 days, in-
corporating multiple angles and enabling the calculation
of the BRDF. The two instruments also have different
overpass times, resulting in distinct solar angles on the
scene, which impacts the observed surface reflectance.
Through its BRDF product, MODIS provides the pa-
rameters necessary to determine surface reflectance at
any view and solar angles, so this can be used to de-
rive an S2-equivalent MODIS retrieved reflectance value.
The equations for this conversion are given in work by
Roujean et al. [14], and the solar and view angles are
taken directly from the SIAC output of the S2 data. The

S2-equivalent MODIS values can then be compared with
the SIAC values, using a time-series to allow compari-
son of non-simultaneous measurements. Where MODIS
data is available and S2 data is not, linear interpolation
is used to approximate solar and view angles of the S2
satellites. The comparison is made for a 3 by 3 grid
of homogeneous MODIS pixels (1.5 km by 1.5 km), with
SIAC data translated from S2’s UTM/WGS84 projec-
tion to MODIS’s sinusoidal projection. SIAC translated
pixels are required to have less than a 5% probability
of cloud cover (a more rigorous condition is used than
in AOT comparisons as cloud has a more significant im-
pact on surface reflectance), whilst the 16 day averaging
of the MODIS data mitigates the influences of clouds.
The target uncertainty threshold for surface reflectance
retrievals is δr = 0.005 + 0.05r, where r is the BOA sur-
face reflectance value.

4 AOT Comparison
4.1 Results: determining comparison radii

4.1.1 Case study 1: forest

Figure 1a shows an RGB image of the location of the
Case study 1 AERONET detector, with its homogeneous
forested surroundings. The AOT plot in Figure 1b illus-
trates the variation of AOT over the same spatial area as
the RGB image, which appears relatively uniform. How-
ever, the river running from west to east has been un-

Figure 4: Linear ODR fit RMSE (a) and SIAC bias (b) as a function of radius averaging, for Case study 2, the NEON WREF detector. Using data
from 60 images from 12/02/2018 to 04/06/2021
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Figure 5: RGB (a) and AOT (b) plots from S2 data for Case study 3, the Dalanzadgad detector, on 19/03/2021

Figure 6: Linear ODR fit RMSE (a) and SIAC bias (b) as a function of radius averaging, for Case study 3, the Dalanzadgad detector. Using data
from 166 images from 15/08/2015 to 28/08/2020

intentionally detected in the AOT retrieval as a band
of higher values. There are also ‘edge effects’ on the
right hand side of the S2 image; these commonly occur
in satellite imagery. A comparison between the linear fit-
ting of SIAC against AERONET data at different radii
is given in Figure 2. The linear fitting method used is
an Orthogonal Distance Regression (ODR)4, considering
errors in the y axis (SIAC) and x axis (AERONET). De-
spite the AERONET values being treated as reference
values, they have measurement errors and variations be-
tween measurements made at different times, so cannot
be considered to be ‘true’ values, making the standard
least squares regression method inapplicable. Figure 2a

shows that the RMSE between the measured and pre-
dicted SIAC values increases until a radius of 28 km,
before decreasing again. SIAC is found to have a posi-
tive bias compared to AERONET values, with the bias
increasing with radius. Considering these two parame-
ters, a 10 km radius was used for the AOT comparison,
as this has a lower RMSE than any larger radius. Radii
under 10 km are not considered as these have larger un-
certainties due to using fewer pixels in calculating the
SIAC value.

4.1.2 Case study 2: forest

Figure 3 shows the expected increase of AOT towards the
urban area on the western side of the tile, whilst edge ef-

4https://docs.scipy.org/doc/scipy/reference/odr.html

Figure 7: RGB (a) and AOT (b) plots from S2 data for Case study 4, the Sede Boker detector on 05/02/2020
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Figure 8: Linear ODR fit RMSE (a) and SIAC bias (b) as a function of radius averaging, for Case study 4, the Sede Boker detector. Using data
from 68 images from 04/01/2017 to 05/02/2020

fects are again visible on the eastern edge of the scene.
Figure 4a shows that RMSE increases as the compari-
son radius increases, so a radius of 10 km is again used.
Figure 4b shows a decrease in bias at larger radii; this
variation is likely due to the inhomogeneous AOT distri-
bution and particularly the strong edge effects.

4.1.3 Case study 3: desert

The detector location is illustrated in Figure 5, showing
uniform surface cover and fairly uniform AOT values.
Figure 6a shows that the lowest RMSE is found at the
largest radii, and so a comparison is made at 50 km.

4.1.4 Case study 4: desert

Figure 7 shows the other selected desert detector, with
visibly higher AOT near the urban area in the north-
west of the image, but fairly consistent values elsewhere.
The performance comparison at varying radii is shown in
Figure 8, with this another location where 10 km is the
optimal comparison radius based on RMSE trends.

4.1.5 Case study 5: built-up

The location of the final Case study site is depicted in
Figure 9; again this location shows, as expected, signifi-
cantly higher AOT values over the urban area than the
forested area. We can see that this location is inhomo-
geneous both at a large scale, with urban and forested
regions, and at a small scale, with factories, parks and
residential areas all being present in the urban regions.
Looking at Figure 10a, the lowest RMSE is found at

larger radii, so a comparison is made at 50 km. The
decreased RMSE at larger radii suggests that the reduc-
tion in random error when considering a larger area has a
more significant effect on the SIAC averaged result than
the increase in AOT variation does.

4.2 Results: AOT retrieval validation

4.2.1 Case studies 1 and 2: forest

Figure 11: Scatter plot of SIAC and AERONET measured AOT values,
showing a perfect 1 to 1 relation, target uncertainty bounds, and the
calculated ODR linear fit, for Case study 1, the Amazon ATTO Tower
detector. Data from 27/06/2016 to 13/12/2020

For Case study 1, the AOT comparison in Fig-
ure 11 shows a reasonable agreement between SIAC and

Figure 9: RGB (a) and AOT (b) plots from S2 data for Case study 5, the Beijing-CAMS detector on 23/05/2018
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Figure 10: Linear ODR fit RMSE (a) and SIAC bias (b) as a function of radius averaging, for Case study 5, the Beijing-CAMS detector. Using data
from 104 images from 27/02/2017 to 12/05/2020

AERONET values. The positive bias is quantified in a
positive intercept and gradient larger than 1, however a
high proportion (64.1%) of the points lie within target
uncertainty values as specified in Section 3.1. This is be-
low the target value of 68% but is an encouraging result
given the relatively small sample size.

Figure 12 visualises the overall SIAC overestimation
for Case study 2, with similar gradient and intercept val-
ues to Case study 1. Here 71.7% of points lie within the
uncertainty targets, which is a very strong result.

Figure 12: AOT comparison scatter plot for Case study 2, the
NEON WREF detector. Data from 12/02/2018 to 04/06/2021

4.2.2 Case studies 3 and 4: desert

The scatter plot at 50 km for Case study 3 is given in
Figure 13, showing significantly worse SIAC performance
than the two forest Case studies (1 and 2). Whilst the
intercept is similar, the gradient is much larger and SIAC
overestimation is clearer on the scatter plot with a larger
bias. Only 45.2% of points lie within target uncertain-
ties.

At 10 km, the comparison for Case study 4 is made
in Figure 14. This, as with the other desert Case study,
provides compelling evidence of SIAC overestimation,
characterized by a large intercept and a low percentage
(30.9%) of points within the uncertainty bounds. The
remaining 69.1% of points all demonstrate SIAC overes-
timation.

Figure 13: AOT comparison scatter plot for Case study 3, the Dalan-
zadgad detector. Data from 15/08/2015 to 28/08/2020

Figure 14: AOT comparison scatter plot for Case study 4, the Sede Boker
detector. Data from 04/01/2017 to 05/02/2020

4.2.3 Case study 5: built-up

Figure 15 for Case study 5 shows similar results to Case
studies 1, 2, 3 and 4 with a general overestimation by
SIAC resulting in a positive intercept and gradient larger
than 1; it has a low percentage of points within the target
uncertainty values at only 32.7%. This is significantly
lower than both of the forest sites (Case studies 1 and
2).
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Figure 15: AOT comparison scatter plot for Case study 5, the Beijing-
CAMS detector. Data from 27/02/2017 to 12/05/2020

4.3 Discussion

There is a clear trend across all five analysed locations
for SIAC overestimating the AOT. Each location shows
a positive intercept and most a gradient larger than 1,
so the bias increases as the AOT value increases. Perfor-
mance is good in the forest sites (Case studies 1 and 2,
Figures 11 and 12), with an average of 67.9% of points
within the target uncertainty bounds, and an average
bias of 0.0406. Over the desert sites (Case studies 3 and
4, Figures 13 and 14), performance is significantly worse
with 38.1% of points within the target bounds and a bias
of 0.0923. This degradation of performance over brighter
surfaces is not unexpected for an aerosol retrieval: light
reflected from the surface represents noise whilst light
scattered from the aerosols is the signal, so if the sur-
face reflectance is higher then the signal to noise ratio is
lower and AOT retrievals typically give worse results [15].
However, the decreased signal to noise ratio should only
increase the uncertainty in SIAC’s AOT retrievals and
not the bias, and so comparing the results between for-
est and desert Case studies shows that SIAC’s AOT re-
trieval is significantly worse over the desert sites. The
desert sites have 29.9% fewer points within target un-
certainties, and a bias that is over 2 times larger than
that of the forest sites.

Case study 5 (the urban region) also shows poor re-
sults with 32.6% of points within target uncertainties
and a bias of 0.1111. This is the highest bias of any of
the locations and suggests SIAC’s AOT retrievals are less
accurate over urban areas than over deserts or forests.
As previously discussed in Section 4.1.5, this site shows
large-scale inhomogeneity and this may be affecting the
results. The AOT is less uniform across the urban area
than in other Case studies, so averaging SIAC across
a wide region is not representing the SIAC retrieval at
the AERONET detector location. This will always be a
challenge when analysing SIAC AOT performance over
urban areas using this method, as very few urban ar-
eas cover a 50 km radius around an AERONET detector
with uniform AOT within that region. It is also pos-
sible that the small-scale inhomogeneity of Case study

5 is decreasing the accuracy of the SIAC results: be-
cause the characteristic size of surface use in this region,
such as buildings and urban parks, is larger than the
high resolution S2 pixels and smaller than the lower res-
olution MODIS pixels, SIAC’s method of projecting S2
data onto a 500m resolution to match MODIS may in-
troduce larger errors than for more homogeneous areas.
This is an inherent shortcoming of SIAC’s method and
suggests that its AOT retrievals over areas with small-
scale inhomogeneities will always be less accurate than
over more homogeneous regions. This Case study also
includes higher values of AOT than the other Case stud-
ies, however there is inconclusive evidence of inconsistent
SIAC retrieval for higher AOT values due to a lack of
very high AOT values.

Visually comparing the AOT images to the RGB im-
ages (Figures 1, 3, 5, 7 and 9) also provides some in-
sights into SIAC’s performance, despite each image only
representing one observation of the scene. The patterns
of AOT agree with expectations of higher values over
urban areas which qualitatively supports good perfor-
mance by SIAC, albeit at a rather basic level. It is also
of interest that the AOT retrieval has picked up the pat-
terns of the rivers in tiles 21MTT and 10TER (Figures 1
and 3 respectively). There is no physical reason for the
true AOT values to be any different above the rivers,
so this represents a shortcoming in SIAC’s AC method.
The likely source is the MODIS BRDF data which has
varying accuracy across different surface types, with this
inconsistency being maintained through the SIAC AOT
retrieval to give an optimal estimate with an AOT that is
noticeably different above the rivers. This highlights an
unavoidable issue with SIAC in that it relies on MODIS
BRDF data being correct, and any error in MODIS data
will be propagated through to SIAC processed data.

5 Surface reflectance Comparison

5.1 Results

A comparison time series for a homogeneous region in
the Case study 1 (forest) tile is shown in Figure 16. This
demonstrates that SIAC performs moderately well in
comparison to the MODIS data with the seasonal trends
matching, such as the increase in surface reflectance in
the summer of 2018. None of the analysed bands show
SIAC reaching performance targets as specified in Sec-
tion 3.2, with an overall average of 50% of points within
the target uncertainty bounds. However, the calculated
statistics are not fully representative of SIAC’s accuracy,
as they are derived from an inter-comparison of satellite
data rather than a validation with ground measurements.
Consequently, these calculations are limited by inaccu-
racies in the reference dataset, here the MODIS BRDF
data. The red and green bands both show SIAC un-
derestimating surface reflectance with biases of −0.0066
and −0.0061 respectively, whilst the blue band shows
SIAC overestimating the surface reflectance with a bias
of 0.0010.

A homogeneous desert region in the Case study 3 tile
8



Figure 16: A time series from 08/04/2016 to 13/12/2020 of SIAC and MODIS retrieved surface reflectance in S2 viewing geometry for the red,
green, and blue visible bands over a region of the S2 tile for Case study 1

Figure 17: A time series from 09/01/2016 to 25/08/2020 of surface reflectance data over a region of the S2 tile for Case study 3

is also analysed, with the results shown in Figure 17.
This indicates similar results to the comparison in the
Case study 1 tile, with SIAC matching the trends in
MODIS data, although here we have closer agreement
and more SIAC points within the target uncertainties, an
average of 59.5%. The comparison in the Case study 3
tile shows SIAC overestimation for all three bands, with
the largest overestimation occurring in the blue band,
which has a bias of 0.0143 whilst bias in the red band is
0.0052 and the green band bias is 0.0045. This is a sim-
ilar trend to the Case study 1 comparison (Figure 16)
where the blue band has a more positive bias than either
of the red and green bands.

5.2 Discussion

The surface reflectance comparison shows largely encour-
aging results, with SIAC able to identify the major trends
in surface reflectance (as observed by MODIS), and also
detect some of the shorter term variability. It can be
seen that SIAC overestimates surface reflectance for the
desert site (Case study 3, Figure 17) giving a mean bias
of 0.008 across the three bands, whilst it makes an under-

estimation for the forest site (Case study 1, Figure 16)
with a mean bias of −0.004. This contrasts with the
AOT results which SIAC overestimated on both surface
types, with a larger positive bias over desert sites (0.0923
on desert sites and 0.0406 on forest sites). This suggests
that SIAC’s general performance on surface reflectance is
likely more accurate than its AOT retrieval due to biases
across different surface types being distributed around
zero, rather than all being positive. For any given lo-
cation (excluding snowy scenes), the surface brightness
is likely to lie between that of the forest and desert
sites. Therefore assuming that the AOT retrieval bias is
positively correlated to the surface brightness, as seems
to be the case here, the AOT overestimation will be
bounded by that found for forest and desert sites (biases
of 0.0406 and 0.0923 respectively). Similarly, the surface
reflectance bias is likely bounded by the overestimation
found for the desert scene (bias of 0.008) and the under-
estimation present in the forest scene (bias of −0.004).
This means the SIAC retrieved surface reflectance will be
closer to MODIS BRDF derived results than the SIAC

9



retrieved AOT value is to AERONET measurements.
However, there are shortcomings in the quantitative

results obtained here. Firstly, the comparison method
is only an inter-comparison between satellite data, not
a validation of SIAC results compared to more accu-
rate ground measurements. This introduces larger un-
certainty and potential bias in the ‘reference’ data. Sec-
ondly, the spectral bands of the different filter radiome-
ters are not exactly matched, so different measurements
of identical scenes are to be expected. Nonetheless, these
initial results are encouraging, and point towards SIAC
providing an accurate high resolution surface reflectance
product.

6 Conclusion
AC modules derive BOA results from TOA satellite mea-
surements by accounting for atmospheric scattering and
absorption by aerosols and water vapour. The SIAC
module aims to provide atmospheric corrections for the
S2 and L8 satellites through a Bayesian framework, in or-
der to produce high resolution surface reflectance data.
437 S2 scenes across five different locations are pro-
cessed with SIAC, matched spatially and temporally to
AERONET measurements and analysed to determine
the accuracy of the SIAC AOT retrievals. Surface re-
flectance data from S2 scenes of a forest location and
a desert location are compared with MODIS surface re-
flectance data across a four year time period.

SIAC AOT results are found to be variable across dif-
ferent surface types, with good accuracy in forested areas
(67.9% of points within target uncertainties and a bias
of 0.0406) but worse results in deserts (38.1% of points
within target uncertainties and a bias of 0.0923) and an
urban area (32.6% of points within target uncertainties
and a bias of 0.1111). Further analysis of other sites with
small-scale land use inhomogeneities is required to deter-
mine if the poor AOT retrieval at the urban location is
due to signal to noise effects, unavoidable issues with the
validation method when applied to areas with large-scale
inhomogeneity such as is the case here, or a more inher-
ent issue with SIAC with the small-scale inhomogeneity
being observed differently by S2 and MODIS.

SIAC surface reflectance results are analysed for a
region of forest and a region of desert. Results are en-
couraging in both cases, showing general agreement with
seasonal trends in MODIS data with biases of −0.004
and 0.008 respectively. None of the analysed bands
achieve the target uncertainty limits, however the inter-
comparison method limits the best possible result. Fur-
ther investigation is recommended, including compari-
son of surface reflectance results across a wider variety
of surfaces, a more thorough validation utilising ground
measurements (for example from RadCalNet detectors),
and improved accuracy in the inter-comparison method
by accounting for different spectral response functions of
the S2 and MODIS filter radiometers.
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