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Abstract. In volcanic eruptions, volcanic ash can
be ejected several kilometres high into the atmo-
sphere, where it is transported and dispersed by
winds. Numerically modelling ash dispersion is cru-
cial for aviation safety because ash has the potential
to damage flight-critical infrastructure on aircraft
[1][2]. The development of these numerical mod-
els relies on observations of how ash evolves over
its lifetime. Thus, this project aims to make such
targeted observations using satellite images. Exist-
ing techniques to measure ash cloud properties are
combined with ‘optical flow’ algorithms which track
ash particle motion. This produces real-time data
on how ash particles are removed from the cloud. In
the first method, ash cloud properties are observed
in a ‘Lagrangian’ reference frame moving with ash
particles. In the second method, changes to the ash
cloud caused by depositional processes are isolated
in the observations. These methods are applied the
July/August 2020 eruption of Nishinoshima, Japan.

I. INTRODUCTION

During volcanic eruptions, Volcanic Ash Advi-
sory Centres (VAACs) are responsible for issuing
ash forecasts and no-fly zones [3]. These are pro-
duced using numerical models which simulate ash
transport (the following discussion is based on the
model used by the London VAAC, called NAME [4]).
These models consider how individual ash particles
are transported by the wind, as well as how they in-
teract with each other and their environment. The
interacting processes come in two main types: par-
ticle aggregation, where smaller particles stick to-
gether to form larger, heavier particles [5], and par-
ticle washout, where ash is removed from the cloud
by ice or liquid water in the form of ‘hydromete-
ors’ [6]. In models, these processes are represented
with parametrizations because too many particles
are involved on too small a scale to simulate explic-
itly. However, not all of these processes are included
in current dispersion models. For example, NAME
does not consider aggregation [4]. This introduces
some error to ash forecasts, since aggregated parti-

cles typically have different terminal velocities from
their constituents, so their predicted times spent in
the ash cloud before fall-out will differ [5].

To develop and validate model parametrizations,
observations are required of these processes in ac-
tion. The only observations which have sufficient
spatio-temporal coverage and resolution come from
satellite platforms, since clouds of ‘distal’ ash can
travel thousands of kilometres before being de-
posited [7] (distal ash is small enough that it is
carried passively by currents of air. It is typically
smaller than 15 µm). Prior studies have developed
satellite ‘retrieval’ techniques, which use the physics
of how ash and its environment interact with infrared
(IR) radiation to obtain the properties of ash clouds
from satellite images [8][9][10].

Meanwhile, in separate studies of water clouds,
detailed observations have been made of how the
properties of those clouds change over their lifetimes
[11][12][13]. This was achieved by tracking clouds in
satellite images, sometimes by using ‘optical flow’
algorithms which calculated the cloud velocities.

Thus, this project combines satellite retrieval
data of ash cloud properties with optical flow-derived
estimates of ash velocities in satellite images. In sec-
tion IVB, the motion vectors are used to track distal
ash particles within an ash cloud, and their prop-
erties are studied over time in the co-moving (‘La-
grangian’) frame of reference. These observations
are used to study ash particle dynamics, but only
with limited statistical power. Hence, the ash veloc-
ities are also used to model the changing masses of
larger swaths of the cloud. These models are used to
quantitatively test simple parameterizations of ash
particle evolution (sections IVC and IVD).

These methods were applied to a single case
study: the July/August 2020 eruption of Nishi-
noshima, a Japanese volcanic island. Section II
presents the satellite data used. Section III describes
how the properties of volcanic ash and its 2D mo-
tion field were estimated from this data. Section IV
explains the methods introduced above and presents
their results. Finally, section V considers how this
study could be improved and its results applied.
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II. DATA

A. Advanced Himawari Imager

The satellite data for this project came from
the Advanced Himawari Imager (AHI), an imaging
radiometer onboard the Himawari-8 geostationary
satellite (imaging radiometers look at the Earth’s
surface and take 2D images of the radiance in dif-
ferent bands of the EM spectrum. Radiance is the
power radiated by a body in a unit frequency inter-
val and unit solid angle). AHI has IR bands centered
at 10.4, 11.2, 12.4 µm. These record an image every
10 minutes at 2 km resolution at nadir (the viewing
point directly below the satellite, where the finest
image resolution is). This project used the data from
these bands in a window surrounding Nishinoshima
from 31/07/2020 00:00 - 02/08/2020 00:00. Some-
times the raw AHI data was used (section IIID),
but sometimes it was pre-processed to convert it to
equivalent brightness temperatures (sections IIIA
and III B). A brightness temperature (BT) is the
temperature of a black body which produces the
same observed radiance at a given frequency.

III. METHODS

A. Ash detection flag

Before the satellite retrieval algorithm was ap-
plied to the AHI data, the data was filtered using an
ash-detection routine. Then, the algorithm was only
applied to those pixels flagged as containing ash.

The detection routine uses the fact that, between
10-12 µm, ash emissivity increases with wavelength,
while water and ice emissivity decrease [14]. Thus,
if there is a sufficient quantity of ash within a pixel,
the observed brightness temperature should increase
with wavelength between 10-12 µm. Hence, the de-
tection routine calculated the pixel-wise brightness
temperature difference (BTD) between the 10.4 µm
and 11.2 µm channels from the AHI data. If this
quantity was negative, the pixel was flagged as con-
taining ash.

B. ORAC retrievals

The satellite retrieval data for this project was
calculated by the Optimal Retrieval of Aerosol
and Cloud (ORAC) algorithm. Here, a necessary

overview of the algorithm is given, but [8] is referred
to for a more in-depth discussion.

To estimate the physical properties of ash clouds
from satellite images, ORAC first makes a simplify-
ing assumption. It assumes that all light reaching
a pixel in the satellite sensor travels straight from
the atmospheric column lying underneath that pixel.
This allows the model to be run independently on
each pixel. It also means that the output has an in-
tuitive interpretation; each pixel represents a colum-
nar cloud whose properties are being observed. This
set of properties is called the cloud ‘state’.

ORAC then simulates what clouds with differ-
ent possible states would look like from a satellite’s
perspective. This simulation uses ORAC’s ‘forward
model’, a simplified model of radiative transfer in
the Earth’s atmosphere which represents the cloud
as a geometrically infinitesimally thin layer. Finally,
ORAC finds the cloud state which minimises the dif-
ference between the simulated cloud radiances and
the observations. This is its best estimate of the true
cloud state.

The retrieved state vector contains the cloud top
height (H), optical thickness (τ , dimensionless), ef-
fective particle radius (re), and sea surface temper-
ature below the cloud (Ts), along with uncertainties
on these quantities. Optical thickness described the
attenuation of a 550nm beam of light passing ver-
tically through the whole cloud thickness, as in (1)
(Lin is the radiance entering at the cloud base, Lout

is the radiance exiting the cloud top). Note that if
τ > 1, most radiation will be absorbed as it passes
through the cloud. Then, most of the radiation re-
ceived in space will be that emitted by the ash, not
that coming from the ground.

Lout/Lin = e−τ (1)

reff = r̄3/r̄2 (2)

The effective radius is a statistical measure of the
average ash particle size, calculated as in (2) (barred
quantities are averages over all particles).

C. ORAC mass-loading

From the retrieved cloud properties, ORAC also
estimates the mass loading (ml, the ash mass con-
tained within each unit area of a cloud when viewed
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FIG. 1. Total ash mass retrieved by ORAC from
AHI data. Two periods of net mass increase are ob-
served, between 02:00-11:00 07/31/2020, and 09:00-11:00
08/01/2020.

from above). ORAC assumes a constant ratio be-
tween the optical extinction cross-section and geo-
metric cross-section of ash particles, Qext. Thus, the
total geometric ash cross section per unit ash cloud
area is τ/Qext. Assuming all particles are spheres
with radius re and density ρ, spherical geometry
gives (3). A formal derivation is available in [15].

ml =
4τreρ

3Qext
(3)

Integrating the mass loading over the ash cloud
area gives the total mass in the scene (figure 1). Two
periods of net mass increase were observed. These
occurred when there was significant eruptive activity
from Nishinoshima, the only ash source.

D. Optical flow algorithms

In section I, it was mentioned that, by combining
observations of ash cloud properties with the ash
motion field, one could study ash particles over their
lifetimes. This approach was prompted by the use
of ‘optical flow’ techniques in other studies to track
and study water clouds [13].

The purpose of optical flow algorithms is to esti-
mate the apparent displacements of objects between
images, using the differences in pixel intensities. In
this project, we want the optical flow field which is
derived to represent the horizontal motion of par-
ticles in the ash cloud. However, there is one issue
with this. The cloud is made of layers of microscopic
particles, whose velocities differ over the thickness of
the cloud. But, from a satellite image, we can only
derive a two-dimensional flow field. Thus, optical

FIG. 2. The calculated magnitudes of optical flow vec-
tors are shown on a latitude-longitude grid at 07:00
31/07/2020. The flow was derived from images of the
11.2 − 12.4 µm AHI radiance difference. The ash-flag
boundary is shown in white. The ash motion is clearly
identified. Overall, flow vectors near the cloud point
southwards. Other features are also seen in motion, most
likely water clouds.

flow algorithms can only derive ash particle displace-
ments accurately if these do not differ greatly over
the cloud thickness. This condition might not gen-
erally hold, so sections IVC and IVD will consider
how well it is met. In the meantime, to develop the
methods of the following sections, we will assume
that it holds.

Other caveats come from considering the opti-
cal flow algorithm itself. This project used the
‘Farnebäck’ algorithm [16] because of its proven util-
ity in tracking water clouds in geostationary satellite
images [13]. It is a ‘dense’, ‘local’ algorithm, mean-
ing that it estimates the optical flow at every pixel in
an image, and does this by matching correlated lo-
cal patterns of intensity between subsequent images.
Numerically, the algorithm first considers a region
around the pixel whose flow is required. It then dis-
places this region by some vector and calculates the
sum-of-squares difference between it and the pixels
it lands on. It repeats this systematically for many
displacements, and takes the one yielding the lowest
difference as the estimate for the flow vector.

From this discussion, we infer that, if an ash cloud
moves horizontally over a uniform sea surface (so
any changes in radiance come from the cloud alone)
and the particle velocity is uniform over the cloud
thickness, then the optical flow field will correspond
precisely with the physical motion of ash particles.
Between two images of the cloud, the particles either
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move by the optical flow displacement or are lost to
depositional processes.

One flow field from this study is shown in figure
2. The ash cloud motion is clearly detected; the
flow contours match the flagged cloud shape well.
As an initial test, this suggests that the Farnebäck
algorithm worked to track ash motion.

In the following sections, optical flow displace-
ments will be discussed using the notation below.
At each time t and point in space x, an optical
flow vector, f∆t, has been derived from two images
separated by a time interval ∆t. A corresponding
map is defined to act on (t,x), denoted F∆t (4).
This map represents the algorithmic best guess of
how the ash at x moves over the interval ∆t.

F∆t(t,x) = (t+∆t, x+ f∆t(t,x)) (4)

The equivalent, compound calculation for n time-
steps is expressed in (5) (the symbol ∆(n) denotes
the change in a quantity over n AHI intervals).

G∆(n)t(t,x) = F∆tn(F∆tn−1(...(F∆t1(t,x))...)) (5)

∆(n)t =
n∑

i=1

∆ti (6)

IV. ANALYSIS AND RESULTS

A. Ash detection flag and ORAC retrieval data

Before attempting to study ash cloud dynamics,
it is worth taking time to assess the accuracy of the
ash-flag and ORAC retrieved cloud properties. This
is done by comparing these datasets with indepen-
dent observations of the same eruption.

First, to assess the ash detection flag, we com-
pare the flag used in this study with a flag evaluated
on data from the MODIS instrument (see figure 3.
MODIS is another imaging radiometer on a polar-
orbiting satellite). Both flags used the same basic
method, but the MODIS flag took an additional step
to account for water vapour [17]. This is probably
why it detected a much larger ash area, leading to it
observing more than twice the total mass of the re-
trieval in this study (figures 3 and 1). Figure 3 also
shows that the AHI flag did not have a simple ash
mass loading threshold. Some higher mass loading
parts are missed, while lower parts are flagged. This

FIG. 3. Independent observations of the Nishinoshima
eruption. Figures provided by Andrew Prata [18]. Left:
Retrieval of mass loading at 01/08/2020 04:05, using data
from the MODIS instrument. Ash is shown in yellow and
orange. The total retrieved ash mass was 0.2 ± 0.1 Tg.
The ground track of the CALIPSO satellite is overlaid
as a black and green line. The AHI ashflag is outlined
in black. Right: TAB is a measure of how much light is
backscattered to CALIPSO over the green section of its
track. It is plotted as a dark green line. The peak at 6 km
in altitude is caused by the ash cloud [19].

issue affected the results of section IVD, as discussed
there.

To assess the ORAC estimates, figure 4 shows
the median values of some key ash cloud properties,
evaluated across all ash-flagged pixels in the scene
at each time. One observation is that the cloud
optical thickness remained mostly between 1-3 over
both days. This will have affected how well ORAC
performed, since the forward model assumed that
the cloud was an infinitesimally thin layer in the
atmosphere. If τ ≲ 1, this approximation clearly
breaks down, since the observed radiation would
come from points over the whole cloud thickness
(usually ∼ 1 km). Since we are near this limit, the
retrieval values may be spurious.

ORAC also estimated the cloud top height to
be around 1-2.5 km on 31/07/2020, and around 2-
3 km on 01/08/2020 (figure 4). These estimates can
be checked against independent observations from
CALIOP, a Lidar instrument onboard the CALIPSO
satellite [20] (Lidar detects objects by timing the
backscatter of a pulsed light beam). CALIOP
actively measures the presence of aerosols (small
atmospheric-borne particles), so is assumed to give
the ground-truth ash cloud position. It observed
the cloud top height to be around 6km at 04:05
08/01/2020 (figure 3), lying significantly above the
upper quintile of ORAC cloud top heights. It is
likely that this discrepancy was caused by the op-
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FIG. 4. Median values of ORAC retrieval parameters,
evaluated over all ash-flagged pixels at a given time, are
shown as solid blue lines. The upper and lower quintiles
are marked in grey.

tical thickness issue just described. This connection
between optical thickness and cloud top height is
discussed further in the next section.

B. Lagrangian observations of ash particles

In the next three sections, the retrieval data and
optical flow fields are combined to observe ash par-
ticle evolution. In this first section, observations are
made in the frame co-moving with ash particles.

First, the trajectory of an ash particle is gener-
ated by starting at a chosen point, then moving pas-
sively with the optical flow field. Computationally,
this is achieved by applying the map defined in (5).
The resulting trajectory is shown in figure 5. Every
ten minutes, the ash cloud properties were sampled
and averaged in a region surrounding the trajectory
location. This was done instead of taking a single-
pixel reading to acknowledge the uncertainty in the
trajectory position, and also to reduce the uncer-
tainty inherent in the ORAC retrievals (this is valid
since the cloud properties should not vary greatly
across the sample region). The results are shown in
figure 6.

In figure 6, the effective radius (re) stays roughly
constant at 1.1 µm, increasing briefly around 14:00
and 23:00. Physically, particle fallout would have
acted to decrease re, since larger particles have
higher terminal velocities, so fall out more quickly,
while aggregation of particles would have increased

FIG. 5. An ash particle trajectory generated using optical
flow fields is shown in blue, overlaid on an ORAC retrieval
of cloud top height. White pixels contain no detectable
ash. This trajectory was initialised at 31/07/2020 00:00;
its path up to 13:00 on the same day is shown. The square
markers are spaced by 2-hour intervals. The dashed grey
ellipse borders the sample area for measuring ash prop-
erties at this time.

FIG. 6. Ash cloud properties sampled along a trajectory,
a snapshot of which is shown in figure 5. The standard er-
rors are shown as shaded bands. On the cloud top height
plot, the dashed black line has the linear best-fit gradient
for the data from 03:00 - 13:00.

re. However, aggregation would not have caused
both observed increases in figure 6, since it would
only affect the particle size distribution once, and
over a longer timescale than one hour. It is more
likely that the effective radii retrieved by ORAC
were spurious. In fact, that the effective radius
stayed roughly constant suggests that ORAC may
not have had sufficient information to accurately re-
trieve this variable. This is not wholly unexpected,
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since ORAC was used to estimate four cloud state
variables, but was only provided with data from
three spectral channels (section III B).

The low variation of the effective radius explains
another trend in the observations. By holding re
constant in the calculation of the mass loading (3),
the mass loading becomes proportional to the optical
thickness, as observed.

Also in figure 6, the changes in cloud top height
and optical thickness are correlated. Again, this is
probably caused by ORAC’s modelling assumptions
and the data it was provided. As the cloud opti-
cal thickness decreased, more radiation would have
reached the satellite from altitudes below the true
cloud top. Since ORAC assumed that the ash cloud
was geometrically infinitesimally thin, it would have
placed the cloud at a lower altitude to account for
this excess radiation (in the troposphere, the atmo-
spheric layer where the cloud resides, air at lower
altitudes is warmer, and warmer bodies emit more
radiation). These factors also lead to a faster cloud
top height fall rate than is physical. Between 03:00
- 13:00, DH

Dt = −3.9 cm s−1 ( D
Dt is the Lagrangian

derivative: the rate of change in the frame moving
with the ash). This corresponds to the terminal fall
speed of particles with diameter ∼ 20 µm, or aggre-
gates of up to 100 µm [21]. While we expect there
to be some particles of these sizes in the first day
after eruption, there would also be some remaining
fine ash which would descend more slowly, giving a
slower DH

Dt in reality.

Now, the known biases in the retrieval data have
been considered, but there remains one spurious fea-
ture in figure 6. In the first few hours, the cloud op-
tical thickness increases significantly. This is physi-
cally unexpected, and could indicate that the optical
flow technique does not work to track individual ash
particles. If this feature persists when this study is
repeated with reliable retrievals, then the assump-
tions in section IIID will be strongly in doubt.

Clearly these issues mean that the timeseries in
figure 6 should be interpreted with some caution.
However, after 05:00, H, τ , and ml all decrease
monotonically, as is expected physically (there are
some bumps in H, τ , but these are not significant).
Hence, it is possible that, for distal ash further than
about 50 km from the volcano, the optical flow al-
gorithm did accurately derive ash motion and this
method of Lagrangian tracking works. If this is the
case, then repetition of this study with reliable re-
trievals should permit quantitative physical insights

to be made. Unfortunately, the issues mentioned
mean that this is not currently possible.

C. Global mass balance

In this section, an alternative method of
analysing ash particle evolution is developed. It
considers all ash-flagged pixels in the scene, so has
greater statistical power than the single-trajectory
study of the previous section.

The method uses the fact that, with the opti-
cal flow field, one can match ash-containing pixels
in one satellite image with their counterparts in the
previous image. The change in ash properties be-
tween these pixels tells us how this ash evolved over
the time between the two images. If we parametrize
this evolution, then we can attempt to explain the
observed change in mass of the ash cloud in terms
of individual physical processes. Thus, this method
first derives a complete model of how the total ash
mass changes over time. This model is then fit to
the observations. Finally, the goodness of this fit
is used to measure the accuracy of the parametriza-
tions employed and the parameter values obtained.

This method can be applied to any mass distribu-
tion. However, we know that its quantitative results
in this project will be inaccurate, because they rely
on an inaccurate retrieval dataset (sections IVA and
IVB). Thus, only simple parametrizations will be
used, just to determine whether it is worth repeat-
ing this study with more accurate data.

To begin, note that at time t, The total observed
ash mass, Mobs, is given by the sum of the ash masses
per pixel, m, in all the ash-flagged pixels (section
IIIA). These pixels are indexed by the set i(t).

Mobs(t) =
∑
i(t)

m(xi) (7)

Evolving to the some later time, t + ∆(n)t, the ex-
isting ash will disperse horizontally, spreading over
a larger area, causing the mass loading to decrease
(by mass conservation). Since the ash-flagging pro-
cedure cannot detect arbitrarily small mass loadings,
some of this ash will be missed. It is assumed that
this ash continues dispersing at later times, so is not
detected again. To estimate the size of this contri-
bution, it is assumed, as usual, that all ash particles
move passively with the optical flow field. Formally,
the flow field maps the ash-flagged set, i(t), to a
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new set, i′(t+∆(n)t) ≡ G∆(n)t(i(t)), where G∆(n)t is
defined in (5). Then, under the stated assumption,
any points in i′(t + ∆(n)t) that are not in the ash-
flagged set i(t+∆(n)t) have missed detection; their
ash content dispersed below a critical mass loading.
The corresponding subset of i(t) is denoted l(t), the
pixels whose mass was ‘lost’ over the time interval.
The other pixels in i(t) are denoted as r(t), the set of
points remaining in the cloud. Figure 8 shows l(t),
r(t) in red, green respectively.

The mass of the ash which remained in the cloud
(in the set r(t)) will have been affected by de-
positional processes, like washout or aggregation-
enhanced fallout. The action of these processes was
parametrized using the scheme (8). It works like
a scavenging coefficient [22]: Λ removes a constant
fraction of the ash mass within a pixel, m, per unit
time, as that ash is in motion.

Dm

Dt
= −Λm (8)

Meanwhile, there is ash being erupted by the vol-
cano. This is represented with a source term in the
model, equal to the mass eruption rate (MER) of fine
ash (only fine ash is optically retrievable in the IR).
First, the so-called Mastin relationship [23] (equa-
tion (9)) was considered as it is commonly used in
numerical models (e.g. [4]). It estimates the to-
tal MER of ash particles of all sizes, Ṁe, in terms
of the height above the volcano at which the ash
horizontally disperses, H, and two constants. The
value b = 0.25 was chosen, consistent with [23] and
[8], and H was taken to be the maximum observed
cloud top height near the volcano (a good estimate
when H < 10 km [23]). Unfortunately, this term
proved too erratic to be used (figure 7(b)). When
included in a provisional model, the large peak at 30-
35 hours dominated the fitting process. Thus, since
the source term varied little aside from the peak, it
was simply approximated as a constant, Ṁe = c.
Interestingly, the peak was probably physical, being
caused by the coincident volcanic activity observed
in figure 1. However, that figure would also indicate
that a peak between 2-10 hours was missed, where
volcanic activity was also high. This may have been
because the ash flag did not have a consistent mass
loading threshold, so could have missed the relevant,
higher altitude part of the cloud (section IVA).

Ṁe = aH1/b (9)

FIG. 7. Modelling the observed mass change across the
whole scene. 7(a) The observed mass changes over 1-hour
intervals are shown in blue, the model is in orange. The
model is (10). The parameters give the least squares fit to
the observations. For the model and data, χ2 = 96. Since
P (χ2 > 96 | df = 41) = 3 × 10−6, the model is a poor
fit to the data. However, for the first 30 hours, χ2 = 24.
Since P (χ2 > 24 | df = 28) = 0.69, the fit is only poor
at later times. 7(b) The additive terms in the model are
plotted as bold lines. The dashed line is proportional to
the proposed Mastin source term (9).

Overall, this gives a model for the change in the
total observed mass over n AHI image intervals (10).
There are two free parameters: c and Λ.

∆(n)Mobs = −
∑
l(t)

m(xl) + c∆(n)t

− Λ∆(n)t
∑
r(t)

m(xr)
(10)

The observed mass changes in the scene and
the least-squares fitted model are presented in fig-
ure 7(a). Overall, the model captured the 5-hourly
trends well but, after 21:00 31/07/2020, it failed to
recreate the large, roughly hour long, fluctuations
in the observations. This was likely caused by the
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FIG. 8. Flagged regions corresponding to ash entering the
boxed domain (blue), leaving the boxed domain (yellow),
dispersing at the edges of the cloud (red), and in the bulk
of the cloud (green).

crude modelling of the source term. If a more sen-
sitive ash flag had been used, a Mastin source term
could have been constructed, possibly accounting for
the missing variation. The fitted model parameters
were c = (13±1)Gg hr−1 and Λ = (4±3)×10−2 hr−1.
This gives the e-folding time for the true mass of the
ash cloud, te = Λ−1 = (20± 10) hours. This value is
consistent with eruptions of other volcanoes [8] so,
despite the spurious retrieval data, is not unphysical.

D. Source-free mass balance

In the previous section, it proved difficult to ob-
tain an accurate MER. Thus, this section extends
the model of the previous section by omitting the
volcanic source term. This is achieved by only con-
sidering changes within a region, S (outlined in black
in figure 8), which excludes the volcano. Instead of
the source term, the net mass flux into/out of S is
calculated. To do so, the sets α(t) and β(t) are de-
fined as those points which, under the optical flow
map (5), enter S from outside and leave it from in-
side respectively (α(t), β(t) are shown in blue, yellow
in figure 8). The sets r(t) and l(t) are the same as in
the previous model, except they only include those
points which remain within S over the whole time
interval. Overall, this gives a model for the mass
change inside S over n AHI intervals (11).

FIG. 9. Modelling the observed mass change over 1-hour
intervals in the region outlined in figure 8. The 1-hour
interval was chosen to give optical flow displacements sev-
eral pixels long, so it was clear whether particles had
crossed the boundary of S. (a) Observations are shown
in blue, the model is in orange. The model is (11), with
the parameters giving the least squares fit to the observa-
tions. The model and observations gave χ2 = 39. Since
P (χ2 > 39 | df = 41) = 0.56, the model is not a bad fit
to the data. (b) The additive terms in the model.

∆(n)MS = −
∑
l(t)

m(xl)− Λ∆(n)t
∑
r(t)

m(xr)

+A∆(n)t
∑
α(t)

m(xα)−
∑
β(t)

m(xβ)
(11)

The α(t) term is multiplied by an unknown parame-
ter, A, because the ash entering S will lose mass like
the rest of the cloud as it travels. If these losses are
spatially uniform, we expect A = 1− Λ.

Figure 9 shows the observed values for ∆(n)MS

and the least squares fit of the model. The opti-
mal parameters were Λ = (−6± 1)× 10−2 hr−1 and
A = (2.6 ± 0.2) hr−1. Unfortunately, Λ was nega-
tive, and A was greater than one. Both values sug-
gest that the mass of an isolated ash cloud would
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increase, a process for which there is no physical
mechanism. This is not an unexpected result since,
in section IVB, the sampled mass loading initially
increased along an ash particle trajectory. Nonethe-
less, it means that the model cannot be interpreted
in the way it was designed to be, so cannot be used
to make any physical insights. Despite this, it is en-
couraging that the model fit the data well, and that
the optical flow-derived mass fluxes accurately ac-
counted for most of the short-term variation in the
observations. This suggests that the method works,
and that it is worth repeating with more accurate
retrieval data.

It should also be noted that the ash flag issues
mentioned in section IIIA may have contributed to
the unphysical result. The flag did not have a simple
mass loading threshold, so as regions of the cloud
dispersed, they may have become detectable where
previously they were not. It would thus seem like
mass was appearing with no source, as observed.

V. CONCLUSIONS

This report has presented an application of op-
tical flow algorithms to derive volcanic ash mo-
tion from geostationary satellite images. This
was implemented in three methods to observe ash
cloud dynamics, which were applied to the 31/07 –
01/08/2020 eruption of Nishinoshima. The methods
showed promise, producing realistic particle trajec-
tories and modelling ash cloud mass balances well.
However, with the retrieval data currently available,
no novel insights could be made into the physics of
ash cloud evolution.

First, the ORAC retrieval dataset was compared
to independent observations to check for errors. Un-
fortunately, the cloud was optically thin (τ ≲ 3),
which meant that the retrieved cloud top height did
not agree with independent Lidar observations. This
issue could be dealt with by modifying the thin cloud
assumption in ORAC’s forward model. Namely, it
may be possible to model a cloud with finite thick-
ness as an infinitesimally thin cloud with modified
emissivity. Implementing this is a current aim for
ORAC’s future development [24].

In the first optical flow-based method, ash cloud
properties were studied along a particle trajectory
from the first day of observations. With the retrieval
data used, the mass loading increased during the
first few hours; this result has no physical explana-

tion if the particle trajectory was accurate. Thus, in
future work, more accurate retrieval data should be
used. This would hopefully address the unphysical
result. If it does not, then the assumptions made
about ash cloud dispersion (section IIID) would be
brought into doubt, as these determine how suitable
optical flow algorithms are for tracking ash parti-
cle motion. Also in the retrieval data, the variation
in the effective radius was unexpectedly small. More
information on this quantity could be obtained by in-
cluding an additional spectral channel in the ORAC
input (as done in [8]).

The other optical flow-based methods attempted
to model the changing mass in parts of the ash cloud,
aiming to test simple parameterizations of ash evo-
lution. The larger datasets involved made these
methods more powerful quantitative tools. The first
model considered the mass changes across the whole
scene. It assumed a constant mass eruption rate
from the volcano and, using the optical flow field,
computed which parts of the cloud escaped the de-
tection algorithm in each time interval. This model
was successful for the first day of observations. The
5-hourly variation in the observed masses was de-
scribed well by the detection losses, and the bulk ash
mass had an e-folding time of 20± 10 hours, compa-
rable to that observed in other eruptions. However,
in the second day, large, roughly hour-long, fluctu-
ations in the total mass change were missed by the
model, likely because of the crude source term ap-
proximation used. If a more sensitive ash detection
method was available, a source term instead could
be constructed based on the Mastin relationship.

So that the volcanic source term could be ig-
nored, the final method modelled the mass balance
in a bounded region of the scene. This model fit the
observations well but, when physically interpreted,
required the presence of unexpected mass sources.
This was most likely caused by the increasing mass
loading along optical flow trajectories which was
noted earlier. Also, the simple ash detection rou-
tine may have contributed to this error. Thus, fu-
ture studies should use an ash flag with known mass
loading limits, and only apply it where mass loadings
lie below the upper detection limit.

The optical flow techniques could possibly also
be improved. The Farnebäck optical flow algorithm
was chosen because it had previously been used with
satellite observations of water clouds [13]. However,
that study did not test whether it was the optimal
algorithm to use. One could test different algorithms
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by applying them to simulated satellite data, evalu-
ated on an ash dispersion model. Then, the agree-
ment between the optical flow field and known par-
ticle motion could be tested.

By repeating these analyses with the suggested
improvements, the methods could provide high-
resolution observations of distal ash physics occur-
ring in real time. One could then introduce and
test more detailed parameterizations of ash evolu-
tion. This may help to develop more accurate nu-
merical models for operational use.
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