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Abstract

Cloud droplet number concentration (CDNC) is
a key parameter for determining cloud physical
processes. It is particularly useful for understanding
cloud-aerosol interactions at the cloud base, which is
not usually possible to observe with other satellite
methods. However, current estimates of CDNC re-
main highly uncertain due to the strong dependence
on the assumptions made and the accuracy of the
satellite data available.

This project evaluates how CDNC is estimated from
satellite data provided by the Moderate Resolution
Imaging Spectroradiometer (MODIS). Different sam-
pling strategies and models are examined, which are
validated against aircraft (in situ) data measured
within the cloud. A summary of different sampling
strategies found in the literature is presented, with the
sampling by Quaas 2006 [1] producing the strongest
correlation between MODIS and in situ data. Ex-
amining different models it is found that variation
in pressure and temperature should be included for a
better representation of CDNC. The total uncertainty
in CDNC estimates is found to be 74.8%, including
contributions from measurements and models. This
is dominated by the measurement uncertainty in the
effective radius retrieved by MODIS. Finally, an eval-
uation of the assumptions made in our models is car-
ried out.

1 Introduction

1.1 Motivations

Clouds play a crucial role in the Earth’s energy
budget. Including clouds and aerosols in climate
models poses a significant challenge since the length
scales over which they vary is much smaller than
the resolution of current climate models. As a

result, clouds and aerosols have been described in
the Intergovernmental Panel on Climate Change
Sixth Assessment Report as the ‘largest contribution
to overall uncertainty in climate feedbacks’ [2]. A
more precise understanding of cloud processes would
improve our ability to predict weather and climate.

CDNC, denoted as Nd, is defined as the number of
cloud droplets per unit volume and is the zeroth
moment of the cloud droplet size distribution. Nd

is an important quantity for determining precipi-
tation process rates as well as cloud radiative and
microphysical properties [3]. For this project I will
be looking at determining Nd at the cloud base and
focus on liquid water droplets, ignoring ice clouds.
This is due to ice clouds having different formation
mechanisms, with different aerosols acting as nuclei
for ice clouds. Hence, they constitute a separate area
of study.

I will limit my analysis to stratocumulus clouds,
where the assumptions that the cloud is spatially
homogeneous and the cloud deck is thin in its
vertical extent are often met. In addition to this,
stratocumulus clouds cover more of the Earth’s
surface than any other cloud type and hence are very
important for the Earth’s energy balance principally
through their reflection of solar radiation [4].

Satellite retrievals do not directly provide Nd since
the solution space is multi-valued. Hence, it is not as
well defined as other quantities such as optical thick-
ness and effective radius [5]. Instead, Nd will be in-
ferred from parameters for which satellite retrievals
are better constrained. We choose to use satellite
retrievals over ground-based observations due to the
greater area that they can view, with MODIS provid-
ing observations of the entire Earth’s surface every 1
to 2 days [6].
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1.2 Background

Stratocumulus clouds form when short wave solar ra-
diation warms the ocean’s surface. This creates a
warm moist parcel of air above the surface which rises
adiabatically as shown in figure 1. The air parcel cools
as it expands until it reaches its dew point. Here, con-
densation of the moisture out of the air parcel begins
to occur onto the aerosols in the atmosphere, which
form the cloud droplets. This air parcel will continue
to rise until it reaches the level of neutral buoyancy
(LNB), which determines the height of the cloud.

Figure 1: A sketch of the processes that lead to the
formation of a stratocumulus cloud. Yellow arrows
represent incoming solar insolation; blue represent
thermodynamic processes. LNB is the level of neu-
tral buoyancy

A larger number of aerosols increases the number of
cloud condensation nuclei (CCN) which results in a
larger CDNC. For a fixed liquid water path (LWP)
- the mass of liquid water in a vertical 1m2 column
of atmosphere - this will lead to a larger number of
droplets, each with a smaller volume. This will result
in a larger albedo.

There are competing mechanisms by which changes
in Nd both act to increase and decrease the cloud
fraction. Firstly, an increase in Nd will lead to a
suppression of precipitation which results in a larger
cloud fraction. Conversely, a larger Nd will increase
the cloud top entrainment, since the smaller droplets
evaporate more easily, which in turn reduces the cloud
fraction. The relative magnitude of these effects is not
well constrained and hence there is not a consensus
on the sign of the net effect of changes in Nd on the

Earth’s energy budget [7]. Therefore Nd is an im-
portant parameter for observing the aerosol effect on
clouds and constraining the radiative forcing due to
aerosol-cloud interactions.

Figure 2: A stratocumulus cloud deck imaged with
the MODIS red, green and blue bands; taken at the
same time as one of the aircraft flights

1.3 Previous work

Previous work has suggested different pixel-level
sampling strategies, which refers to which pixels
from the satellite data we select to include in our
analysis. Studies such as Quaas 2006 [1] have limited
their analysis to pixels for which optical depth
and effective radius retrievals are most reliable.
Subsequent work has additionally considered if the
spatial homogeneity assumption is valid [8] as well
as considering the extent to which the often made
assumption that the cloud is adiabatic are satisfied
[9].

Many previous studies have highlighted the large un-
certainty in CDNC calculations. Hence I look to bet-
ter characterise the relative contributions to the un-
certainty considering both the impact of the measure-
ment and model. A better understanding of the un-
certainty will provide us with an insight into which
processes are dominating the uncertainty so that fu-
ture work can be directed into those areas.
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2 Theory

Cloud droplets follow a size distribution n(r, z), which
describes the number density of cloud droplets with
radii in the interval [r, r + dr] at an altitude z. Nd is
defined as,

Nd(z) =

∫ ∞

0
n(r, z) dr. (1)

The extinction efficiency of a droplet, Qext is defined
to be the ratio of the extinction cross section of the
droplet to its projected area relative to the incident
radiation. In the geometrical optic limit, which is
appropriate since the droplet radii are much larger
than the wavelengths of the incident solar radiation,
Qext → 2.

We define effective radius, re, and mean volume ra-
dius, rv of the droplet as

re =
⟨r3⟩
⟨r2⟩

, r3v =
⟨r3⟩
Nd

, (2)

where angled brackets represent averaged quantities
weighted by n(r, z). We additionally define the quan-
tity

k =

(
rv
re

)3

, (3)

which is a measure of the width of the droplet size
distribution. k is observed to be approximately con-
stant with a value of 0.72 in stratocumulus clouds [10].

We will also assume that the liquid water content
(LWC) of the cloud is a constant fraction of its
adiabatic value (not precipitating or mixing with its
environment) denoted as fad. This value is often
taken to be 0.66 with a standard deviation of 30%
[8]. Another relevant quantity is the gradient of
the liquid water content with altitude cw with units
kg/m4.

Assuming that re and LWC increase linearly with al-
titude above cloud base [11], and that all other physi-
cally relevant quantities are constant through the ver-
tical extent of the cloud [12], Nd can be written as:

Nd =
1

2πk

√
5fadcwτc
Qextρwr5e

. (4)

.

In equation 4 re is evaluated at cloud top and τ is
the optical depth of the cloud. For a more complete

treatment see appendix A.

Under the same assumptions we can write down the
LWP (kg/m2) as,

LWP =
10

9Qext
ρwτcre. (5)

3 Methods

3.1 Data

3.1.1 Aircraft Measurements

The in situ aircraft measurements that were used for
our satellite validation were taken from the Marine
Aerosol Cloud and Wildfire Study (MACAWs) flight
campaign. This is aircraft data over the North East
Pacific, west of California, on four different days
between 25th June and 12th July 2018. The location
of this campaign was suitable for the project since
regions of high stratocumulus cloud coverage are
typically found in these mid-latitude coastal regions
to the west of major land masses. The flight paths
for the different days are shown in figure 3.

Figure 3: Trajectories of the four days of MACAWs
flight data used in this study. The MODIS true color
image of the red rectangle for the 12-07-2018 flight
day is figure 2

The aircraft measures CDNC and wind-speed using
a laser attached to the wing of the aircraft at a fre-
quency of 1 Hz as it passes through the cloud deck
[13]. Since the speed of the aircraft is on the order of
200 ms−1, the aircraft observations over-sample the
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MODIS data with approximately five aircraft mea-
surements in each MODIS pixel. However, this over-
sampling is much greater when we impose our quality
control to the satellite data.

3.1.2 Satellite Observations

For this study the satellite data used came from the
MODIS instrument, which is onboard both the Aqua
and Terra spacecrafts [6]. The effective radius and
optical depth are derived from the MODIS visible
and near infrared channels whereas the cloud top
pressure and temperature are calculated from the
infrared channel [14].

The satellite data is an image made up of pixels
at a range of resolutions -250m, 1 km and 5 km.
Measurements of optical depth, effective radius,
cloud top temperature and pressure are at the 1km
resolution. The latitude, longitude and zenith angles
are described at the 5 km resolution. Under the
assumption that these parameters are smoothly
varying functions in space, a linear interpolation
could be applied between the 5 km pixels to represent
them at the 1 km pixel level so that all the rele-
vant quantities were described at the same resolution.

The 5 km cloud fraction is defined as the the fraction
of pixels in a 5 km square that are likely to be cloud.
The analysis is carried out at the 1 km resolution,
hence all 1 km pixels lying within a larger 5 km
resolution pixel are assumed to have the same cloud
fraction. The cloud sub-pixel inhomogeneity index
(SPI) is a measure of the spatial uniformity of a 1 km
square. It is defined as the ratio of the standard
deviation of the radiances at the 250m resolution
relative to the mean radiance for the 1 km pixel
measured as a percentage.

3.2 Co-location

The co-location algorithm used for this study finds
the nearest MODIS pixel corresponding to each air-
craft data point in space and time. The temporal
separation is accounted for using the advection of the
air parcel by the wind. Working in local Cartesian
coordinates, a measure of the total separation,

D =
√

(∆x+ Ux∆t)2 + (∆y + Uy∆t)2, (6)

was minimised. In equation 6 ∆x and ∆y are the
easterly and northerly components of the spatial

separation respectively; Ux and Uy the corresponding
components of the winds velocity and ∆t the tempo-
ral separation of observations.

The mean value of CDNC measured by the aircraft
within each MODIS pixel satisfying the sampling con-
ditions is then calculated. A maximum temporal sep-
aration of fifteen minutes between the aircraft and
satellite data was imposed, which in general is short
compared to the timescales over which the stratocu-
mulus clouds evolve and is in line with previous vali-
dation studies [15]. The code written to carry out the
co-location is in appendix B.

4 Results

4.1 Sampling Strategy

Sampling strategy is the method for selecting pixels to
include in our analysis. I consider the sources of error
in the retrieval for a given pixel as well selecting the
pixels that suit our modelling assumptions, namely
those representing spatially homogeneous stratocu-
mulus cloud decks. Some key sampling strategies that
are employed in the literature are shown in table 1.
Throughout this section I use the model suggested by
Quaas 2006, as in equation 7, to calculate Nd.

Base CTT > 273K
Single Layer
Single Phase

Quaas 2006 Base
τ > 4
re > 4 µm

Grovesner 2018 Quaas 2006
Solar Zenith Angle < 65◦

Satellite Zenith Angle < 55◦

5km Cloud Fraction > 0.9
Cloud SPI < 30 %

Zhu 2018 Grovesner 2018
τ in top 10%

Table 1: Sampling Strategies.

All studies choose to restrict analysis to single phase
clouds with a cloud top temperature (CTT) > 273K,
as this ensures that we are viewing an entirely liquid
water cloud. Restricting analysis to single layer
clouds ensures that the satellite and the aircraft
observe the same cloud and that the satellite view
is not being obscured by clouds higher up in the
atmosphere. These conditions are referred to as Base
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in table 1.

Quaas 2006 [1] restricts pixels for which τ > 4 and
re > 4µm as shown in table 1. This is because
retrievals for re and τ are most reliable in these
ranges [5].

Grovesner 2018 [8] makes a number of recommenda-
tions for pixel level sampling, with a similar reasoning
to Quaas for placing a lower bound on τ and re.
The solar and satellite zenith angles are defined as
the angles that the sun and the satellite make with
the vertical respectively. At large zenith angles,
cloud 3D radiative effects become important such
as the illuminating effect, shadowing, and photon
leaking. These alter a cloud’s reflectance and reduce
the quality of our retrievals [16]. Hence placing an
upper bound on both of these quantities reduces
the uncertainty in our retrieval. A cloud fraction
close to 1 and a small cloud SPI indicate a spatially
homogeneous cloud field.

Zhu 2018 [9] makes the additional constraint that
only the pixels in the top 10% of optical depth should
be selected, arguing that these pixels represent the
convective cores of the stratocumulus clouds and
most closely follow adiabatic parcels.

The results are summarized in table 2 where: n is
the number of pixels satisfying the condition; mean
bias is defined as the difference between MODIS and
in situ measurements and the R-squared value is the
square of the Pearson product-moment correlation co-
efficient.

Sampling Base Quaas Grovesner Zhu
2006 2018 2018

n 1167 114 64 28
R-squared 0.25 0.57 0.49 0.04
Mean Bias 7.32 -11.72 0.76 -12.1

Table 2: Sampling Strategy results

Panel (e) in figure 4 shows which pixels are removed
using different sampling methods. The sampling
decisions are cumulative with all of the points on the
scatter plot satisfying the base condition. The blue
points are removed by Quaas, the orange points are
additionally removed by Grovesner and the green
points removed by Zhu. The remaining pink points
satisfy all the sampling conditions listed in table 1.
The red line is the target line y = x.

We observe that placing restrictions on re and τ , as
in Quaas 2006, significantly improves the correlation
as it removes many of the pixels for which MODIS
is overestimating CDNC. Grovesner reduces the R-
squared score by 0.08 and removes many ’good’ pixels
lying just below the target line hence improving the
mean bias but without removing any of the pixels
at higher Nd that lie significantly off the target line.
Finally we observe that Zhu removes almost all pixels
at Nd > 200 cm−3 such that too few pixels remain for
a correlation to be observed.

4.2 Inter-model comparison

This section considers different methods to calculate
Nd, referred to as the model. From our sampling
analysis we can see that Quaas 2006 shows the
strongest correlation between the satellite and in situ
data. Hence this method is employed herein so that
any differences are purely down to the model.

The model used by Quaas 2006 makes a zeroth or-
der estimate of Nd with respect to cloud top tem-
perature and pressure asserting that there was little
variability in the cloud top temperature measured for
the study and ignores any possible pressure depen-
dence. Assuming that Nd is equal to its adiabatic
value (fad = 1), evaluating equation 4 at 280K and
850 hPa yields

Nd = α0τ
1/2
c r−5/2

e , (7)

where α0 = 1.37 ×10−5m−1/2.

Gryspeerdt 2016 [17] includes a temperature depen-
dence and writes

Nd = α0f(T )τ
1/2
c r−5/2

e , (8)

with f(T ) =0.0192T - 4.293. This was calculated
using a linear fit to cw evaluated at a pressure of
850 hPa.

Calculations by my supervisors - Povey 2022 in table
3 and figure 4 - suggest an additional pressure depen-
dence, calculated assuming fad = 1 and a constant
value for the latent heat of vaporization. This result
comes from linearising equation 4 around 275K and
850 hPa, resulting in

Nd = α1g(T, p)τ
1/2
c r−5/2

e , (9)

with α1 = 1.28 ×10−5m−1/2 and g(T, p) = 0.0145T+
2.2817 × 10−6p - 3.2314.
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The plot with the title analytic in figure 4 was calcu-
lated using equation 4 assuming a subadiabatic cloud
with fad =0.66 and k = 0.69 where,

cw =
cpρa
Lv

(Γm − Γd). (10)

In general Γ = Γ(T, p, es, Lv) with es the saturation
vapour pressure and Lv the latent heat of vaporiza-
tion. For this study I used the equation for Lv(T )
from Hess 1960 [18] and es(T, p) from Alduchov 1995
[19]. The results are summarized in table 3 and figure
4.

Model Quaas Gryspeerdt Povey Analytic
2006 2016 2022

R-squared 0.57 0.49 0.57 0.38
Mean Bias -11.72 8.15 -39.00 12.48

Table 3: Inter-model Comparison

Overall, the models suggested by Quaas and my su-
pervisor give the strongest correlation between in
situ and satellite data, with an R-squared score of
0.57. The temperature dependence suggested by
Gryspeerdt increases the mean bias by 19.87 relative
to Quaas, reducing its magnitude. The additional
pressure dependence suggested by my supervisor gives
a more negative mean bias than Quaas. From figure
4 this model appears to introduce an offset relative
to Quaas resulting in a less symmetric distribution of
points about the target line. The analytic expression
significantly reduces the R-squared value and gives a
larger spread of points about the target line.

4.3 Uncertainty

The uncertainty in Nd has contributions from both
measurement and model uncertainty. The measure-
ment uncertainty is the uncertainty associated with
the parameters retrieved by MODIS that are used in
the model. The model uncertainty refers to the un-
certainty in the analytic expressions for Nd as well
as any sampling decisions made. In general I will as-
sume that the uncertainties are uncorrelated and that
we can write Nd as:

Nd = Nd(p, T, re, τc, es, L, fad, k). (11)

Therefore the total uncertainty is:

σ2
Nd

=
∑
i

(
∂Nd

∂xi

)2

σ2
xi
, (12)

where xi takes the values shown in equation 11. σNd
is

a slowly varying function of temperature and pressure
for the ranges found in the stratosphere (see appendix
C). Hence for this analysis I set T =275K and p =
850 hPa.

4.3.1 Measurement Uncertainty

The uncertainty in τ and re are 25% and 27% respec-
tively [8]. The average uncertainty in cloud top tem-
perature has been estimated be to 1.65 K [20] and the
uncertainty in cloud top pressure has been estimated
to be 50 hPa [21]. This results in a contribution from
measurement uncertainty to the fractional value of
σ2
Nd

of 45.6% which is dominated by our uncertainty
in re due to its steep functional dependence (raised
to the power of -2.5 in equation 4).

4.3.2 Model Uncertainty

The contributions to the model uncertainty arise
from the functional form that we assume for the
saturation vapour pressure es, and the latent heat
of vaporization of water Lv. We also consider
uncertainty in the degree of sub-adiabacity fad,
and the droplet spectrum width k, to contribute to
the uncertainty in the model as there is significant
variation in the assumed values for these quantities
in the literature.

For the analysis, following Merk 2016 [10], I use fad =
0.63±0.22 and k = 0.72±0.09. The uncertainty in
the es and L was estimated by plotting different com-
monly used expressions for es and L as a function of
temperature and pressure using the ICAO standard
atmosphere [22]. The resulting expressions differed
due to the different physical assumptions made as
well as the fit used. The maximum spread in their
outputs over the [270,300] K range was used as an
upper bound their uncertainty, see appendix D. This
resulted in a fractional uncertainty of 1% and 2% for
es and L respectively. The contribution to σ2

Nd
from

the different models is therefore 8.7%. Combining
this with the measurement uncertainty gives us a
total uncertainty σNd

= 74.8%; this is summarized
in figure 5. For the Quaas and Gryspeerdt models,
which do not both include a temperature and
pressure dependence, the deviation of the tempera-
ture and pressure from the assumed constant value
would introduce an additional systematic uncertainty.
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Figure 4: Comparison between MODIS and in situ at pixel level; a,b,c,d show the impact of the different models;
e shows which pixels are removed by each of the sampling strategies in table 1
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Figure 5: Contribution to uncertainty in Nd

4.4 Altitude analysis

All of the models make the assumption that Nd is
constant throughout the vertical extent of the cloud.
The CDNC measured by the aircraft averaged over
10m altitude intervals for a flight path for which the
aircraft flies upwards through the cloud over a one
minute period is shown in figure 6; the period was
chosen so that variation in CDNC due to the horizon-
tal motion of the aircraft is minimised. It is observed
that the constant Nd assumption is reasonable. This
has also been previously confirmed with large eddy
simulation of stratiform low clouds [8].

Figure 6: Aircraft measured Nd against altitude;

I illustrate that the variation in Nd is not related to

the aircraft’s vertical motion in Figure 7. In this fig-
ure we see justification of the implicitly made assump-
tion that the cloud is horizontally homogeneous on
the scale of individual MODIS pixels over a 1km x
1km area. It is also observed that MODIS is report-
ing a negative bias for the cloud top height, and at
20:37 reports a sudden drop in CDNC which could be
due to a thin layer of aerosols and cloud above.

Figure 7: Top panel shows MODIS reported CDNC,
bottom panel shows the average CDNC measured by
the aircraft for that pixel as a function of its altitude.
The dotted line is the cloud top height measured by
MODIS

5 Discussion and Conclusion

This project set out to improve our understanding
of the relationship between CDNC and MODIS
retrieved parameters by evaluating different methods
and sampling strategies. Restricting to pixels for
which τ and re retrievals are most reliable as in
Quaas 2006 [1] produced the strongest correlation
(R2 = 0.57) between the satellite and in situ data.
The sampling used by Grovesner 2018 [8] removes
pixels that are not spatially homogeneous. This
slightly reduces the correlation however it signifi-
cantly improves the mean bias suggesting that less
homogeneous pixels introduce a negative bias which is
consistent with those pixels having a lower radiance.
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The sampling used by Zhu [9] is too restrictive as
it significantly reduces the dynamic range in CDNC
reported to the extent that no correlation is observed.

From the analysis of different models, I find that in-
cluding temperature and pressure dependence in the
models does have a significant impact on the mean
bias. Therefore we cannot ignore the dependence
of CDNC on temperature and pressure. The model
provided by my supervisor, which included both a
temperature and pressure dependence, gave the joint
highest correlation between in situ and satellite data
but the worst mean bias. This discrepancy in the
mean bias could be attributed to the value of fad or
k in the cloud being different to the value used in
the calculation, since the uncertainty in the value of
these parameters dominates our model uncertainty.
I suggest that future models should include a linear
temperature and pressure dependence. This will
provide a stronger correlation between satellite and
in situ data for clouds at a range of temperatures
and pressures in order to provide a more physically
realistic picture. However future work should further
refine the exact functional form of this so as to
reduce the mean bias. In particular the dependence
on pressure has so far been overlooked in the liter-
ature. The analytic expression produced a weaker
correlation and greater spread in CDNC which could
be attributed to the non-linear terms in es that are
exponential in temperature and pressure.

A total uncertainty for the CDNC estimate of 74.8%
is reported which is dominated by our measurement
uncertainty in re. This is consistent with previous
studies into CDNC. In order to reduce our uncer-
tainty we would need to be provided with tighter
constraints on MODIS retrievals for re. It should
also be noted that all of our models assume that the
value of re reported is that at cloud top; however
the wavelength at which we retrieve re changes the
depth below the cloud top at which it is retrieved.
For our analysis, we have used the re retrieved with
the 2.1µm band. However, future work could explore
the effect of using different bands that may have
different penetration depths into the cloud and hence
be more representative of re at cloud top. MODIS
under reporting cloud top height in figure 7 could
also be attributed to this.

To build on the ideas developed in this study future
work could look at the effect of calculating the mean
CDNC at larger spatial resolutions, for example at

1◦ x 1◦ to reduce the effects of small scale natural
variability. Additionally, MODIS does not provide us
with an independent measure of LWP as this requires
a microwave sensor. If we used such data, we would
be able to use equation 5 to eliminate re and hence
reduce our measurement uncertainty. Microwave re-
trievals have the advantage that they are not sensitive
to aerosols however they may include a contribution
from the rain water path [8]. Moreover, our analysis
could be extended to other flight campaigns to bet-
ter understand a wider range of meteorological con-
ditions.
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A Nd derivation

This derivation closely follows that of Grovesner [8]

If we let n(r, z) be the droplet size distribution from
our definition of Nd we can write

Nd(z) =

∫ ∞

0
n(r, z) dr (13)

.

We also define the optical thickness of the cloud τ as

τ =

∫ H

0
βext(z) dz (14)

Where we measure z from the cloud base and βext is
the cloud extinction coefficient.

We can write

βext(z) =

∫ ∞

0
Qext(r)n(r, z)πr

2 dr. (15)

In the geometric optics limit when, r << λ, Qext = 2
and can hence be taken out of the integral meaning
that we can simplify (15) as

βext(z) = πQext⟨r2⟩. (16)

The effective radius of the droplets is defined as

re =
⟨r3⟩
⟨r2⟩

, (17)

the volume radius is defined as

rv = 3
√
⟨r3⟩/Nd (18)

and the liquid water content

l(z) =
4

3
πρw⟨r3⟩ = fadcwz (19)

where ρw is the density of water and cw is the
gradient of water mixing ratio with height.

Combining 19 and 18 we arrive at

z =
4πkNdr

3
e

3fadcw
(20)

Combining 16, 17 and 14

τc = πQext

∫ H

0
kNdr

z
edz. (21)

Changing the variables of integration to re and assum-
ing everything else is constant throughout the vertical
extent of the cloud

τc =
4π2N2

dQextρwr
5
e

5fadcw
(22)

assuming that re(0) << re(H).

Rearranging yields

Nd =
1

2πk

√
5fabcwτc
Qextρwr5e

. (23)
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B Co-location Code

Function that takes in the aircraft data point of interest (index), relevant MODIS and in situ data and returns
the nearest MODIS pixel for each flight data point

1 def colocation(index ,MOD_lat ,MOD_lon ,MOD_time ,time_insitu_seconds ,

reference_times_diff_seconds ,lat_insitu ,lon_insitu ,WS_x_insitu ,WS_y_insitu

):

2 MOD_lat_lon = (MOD_lat , MOD_lon)

3 (n, m) = MOD_lat.shape

4 delta_haversine = np.zeros ((n, m)) # initialize the arrays for the

haversine distance between the MODIS pixel and the aircraft

measurement in local cartesian coordinates

5 delta_x_haversine = np.zeros ((n, m))

6 delta_y_haversine = np.zeros ((n, m))

7 delta_time = MOD_time - time_insitu_seconds[index] -

reference_times_diff_seconds #reference time difference is because

the insitu data and MODIS data define t=0 at different reference dates

8 aircraft_lat_lon = (lat_insitu[index], lon_insitu[index])

9

10 for i in range(n): #index over the MODIS 1km pixels in the swath

11 for j in range(m):

12 MOD_lat_lon = (MOD_lat[i][j], MOD_lon[i][j])

13 if np.abs(MOD_lat[i][j] - lat_insitu[index]) > 1 or np.abs(

MOD_lon[i][j] - lon_insitu[index]) > 1: # this carries out an

initial rough colocation to save time to remove any points

obviously too far away

14 delta_x_haversine[i][j] = 1e30

15 delta_y_haversine[i][j] = 1e30

16 else:

17 MOD_lat_lon = (MOD_lat[i][j], MOD_lon[i][j])

18 delta_haversine[i][j] = haversine(aircraft_lat_lon ,

MOD_lat_lon ,unit=’m’)

19 delta_x_haversine[i][j] = delta_haversine[i][j] * np.sin(

bearing(MOD_lat[i][j], MOD_lon[i][j], lat_insitu[index],

lon_insitu[index ])) # easterly component of haversine

distance

20 delta_y_haversine[i][j] = delta_haversine[i][j] * np.cos(

bearing(MOD_lat[i][j], MOD_lon[i][j], lat_insitu[index],

lon_insitu[index ])) # northernly component of haversine

distance

21

22 delta = (np.square(delta_x_haversine + WS_x_insitu[index] * delta_time) +

np.square(delta_y_haversine + WS_y_insitu[index] * delta_time)) **

0.5 # pythagorean sum , separation between aircraft measurement and

MODIS reading in meters

23 coords = np.argwhere(delta == delta.min()) #find the coordinates for

which this distance is minimised

24 p = coords [0][0] # extract 1st index for MODIS closest point

25 q = coords [0][1] # second index

26 return ((p,q)) #return the coordinates
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C Uncertainty temperature dependence

We plot the contributions to σ2
tot as a function of temperature using the ICAO standard atmosphere [22]. We find

the the total uncertainty is a slowly varying function of temperature and pressure throughout the stratosphere.
Hence we can just take its value to be the value evaluated at 275K and 850 hPa.

Figure 8: Top: contributions to uncertainty on a linear scale; Bottom: contributions on a logarithmic plot
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D Uncertainty for L and es

From figure 9 we can see that over the temperature range [270,290] K the maximum difference between the
models is 1 % and 2 % for es and L respectively.

Figure 9: The model uncertainty for es and L; a) different models for es; b) fractional difference in es for these
models with respect to reference model Alduchov; c) different models for L; d) fractional difference in L for these
models with respect to reference model Alduchov
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