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Abstract

Real-time satellite detections of volcanic gases are
crucial for alerting aviation to volcanic cloud haz-
ards. A computationally fast algorithm, based on
Walker et al. [1], was developed to detect volcanic
clouds utilising the ν1 absorption feature of sul-
fur dioxide (SO2). The algorithm was then used
to study the Nabro 2011 and Kelud 2014 volcanic
eruptions, using spectral data from the Infrared At-
mospheric Sounding Interferometer. The results
were compared to an existing implementation of
this algorithm, which instead makes use of the more
strongly absorbing ν3 feature. There was good
agreement when high SO2 concentrations were ex-
pected and before significant dispersion. The cen-
tres of volcanic clouds were well-identified through-
out, though identification of the cloud edges be-
came progressively worse. For both case studies,
this allowed the presence and major structural fea-
tures of volcanic clouds to be successfully identi-
fied for several days after emission. After this, the
ν1 algorithm became insensitive to large fractions
of volcanic clouds, making it unsuited to studying
evolution and dispersal over longer time frames.

1 Introduction

1.1 Background

Volcanic eruptions are violent geological events
that often pose risks to people and infrastructure.
Whilst many of these risks are confined to the area
immediately surrounding a volcano, clouds of ash
and gas can travel several thousand kilometres in
the atmosphere.

The vulnerability of aircraft to volcanic ash [2]
can necessitate airspace closure. This occurred dur-
ing the 2010 eruption of Eyjafjallajökull, resulting
in an estimated USD 1.7 billion in revenue losses
[3]. Fine volcanic ash also constitutes a respiratory
hazard, particularly to people with asthma or other
pre-existing lung diseases [4].

When the volcanic gas sulfur dioxide (SO2) is
injected into the stratosphere, the sulfate aerosols
it forms scatter light, increasing the albedo of the
Earth. In extreme cases this results in a reduction

in global temperatures of a degree or more over
a timescale of years [5]. SO2 and sulfate aerosols
have also been shown to degrade aircraft compo-
nents and necessitate costly repairs [6].

Detecting ash and SO2 emissions from volcanoes
is therefore critical for issuing informed warnings
to the aviation industry and quantifying volcano-
induced climate forcings. Methods that allow real-
time detection of volcanic clouds are especially im-
portant for swift and informed responsive action to
be taken.

1.2 Infrared Remote Sensing of SO2

The Infrared Atmospheric Sounding Interferome-
ter (IASI) satellite instrument provides global, high
spectral resolution data which can be used to detect
atmospheric SO2 and locate volcanic clouds. Unlike
ultraviolet and visible remote sensing, infrared data
can be collected during the night, allowing uninter-
rupted monitoring. Normally present in the atmo-
sphere in trace quantities, the elevated SO2 concen-
trations found in volcanic clouds are relatively easy
to identify and track.

Whilst ash is of primary concern to aviation,
there are several challenges to detecting it directly.
These include ice and overlying clouds obscuring
the spectral signal, false positives from water-rich
clouds, and poor thermal contrast to the underly-
ing terrain [7]. SO2 can be used as a proxy for ash,
though this assumption should be used cautiously
since separation can occur due to lifetime and wind
shear effects [8].

SO2 concentrations are measured using total col-
umn amounts, which quantify the number of SO2

molecules within a vertical column of atmosphere.
These can be estimated from IASI spectral data
by means of a fast SO2 linear retrieval algorithm,
described in Walker et al. [1]. This algorithm, here-
after called the linear retrieval, utilises all the chan-
nels surrounding an SO2 absorption feature, provid-
ing greater sensitivity than other methods that use
a select few. It is computationally fast as it assumes
linearity between the measured strength of SO2 ab-
sorption features and the SO2 column amount. Due
to this simplifying assumption, the column amounts
returned should only be used as an indicator of el-
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evated concentrations. For accurate estimates, it-
erative algorithms initialised by the linear retrieval
can be used [9].

1.3 SO2 Absorption Features

Within IASI’s spectral range there are three SO2

absorption features, described in table 1. The
strongest feature, ν3, is utilised in an existing lin-
ear retrieval for IASI that has been in use for over
a decade [9]. It is generally the most sensitive fea-
ture to SO2, though it overlaps areas of strong ab-
sorption from water vapour, limiting its sensitivity
at low altitudes. The ν1 feature is located in an
atmospheric window, preventing these water ab-
sorption features from obscuring the spectral sig-
nal. This allows sensitivity to be maintained down
to the Earth’s surface and low-altitude emissions to
be detected. Unfortunately, it overlaps spectral sig-
natures from clouds and volcanic ash, which can ob-
scure the signal from SO2. Strong reflections with
high spectral dependence from quartz (known as
quartz Reststrahlen) can also cause problems over
arid regions unless specifically accounted for in the
linear retrieval implementation [10]. The ν1 + ν3
feature is only of use when other features are satu-
rated [11] and is not considered in this study.

Table 1: Infrared absorption features of SO2 [9].

Name Central Wavelength Comments

ν1 8.7µm Focus of report
ν3 7.3µm Strongest

ν1 + ν3 4.0µm Weakest

The Infra-Red Sounder (IRS) satellite instru-
ment, due for launch in spring 2025, has a spectral
range that includes the ν1 feature but not the cur-
rently used ν3 feature. IRS will be positioned in
a 0◦ longitude geostationary orbit, providing cover-
age over Europe every 30 minutes and 3–6 times ev-
ery 6 hours for other disc locations [12]. This tem-
poral resolution is a considerable improvement on
the two daily scans possible from polar-orbiting in-
struments such as IASI. Furthermore, its high spec-
tral resolution vastly outperforms the existing Eu-
ropean geostationary infrared satellite instrument
(the Spinning Enhanced Visible Infra-Red Imager)
which has only 12 spectral channels [13]. These
improvements in temporal and spectral resolution
could allow faster detections and warnings for vol-
canic clouds over Europe and Africa. This strongly
motivates the development of a ν1 linear retrieval,
despite the expected reduction in sensitivity. As an
infrared instrument with comparable spectral res-
olution, IASI data provides a useful test for the
performance of this algorithm.

This report describes the development of a fast
SO2 linear retrieval algorithm, applied to IASI
spectral data surrounding the ν1 infrared absorp-
tion feature. The specifications of the IASI instru-
ment are described in section 2.1. An overview of
the linear retrieval and derivation of its fundamen-
tal equations is given in section 2.2. Descriptions of
the spectral ensembles, flagging protocols, and per-
formance metrics required then follow in sections
2.3, 2.4, and 2.5. Computational speed and thresh-
old determination are discussed in section 3.1. The
ν1 linear retrieval is applied to eruption case stud-
ies of Nabro (Eritrea) 2011 and Kelud (Indonesia)
2014 in sections 3.2 and 3.3, where the results are
compared to those of the existing ν3 linear retrieval.
By characterising the strengths and deficiencies of
the ν1 linear retrieval, its ability to detect volcanic
clouds from major eruptions is assessed.

2 Method

2.1 The IASI Satellite Instrument

IASI is a Fourier transform spectrometer with a
spectral range of 645–2760 cm−1 and channel spac-
ing of 0.25 cm−1. Scans are ±48.3◦ of nadir, giv-
ing a 2200 km swath width. Each circular pixel
has a 12 km diameter at nadir; rows of 2 × 2 pixel
groups form each swath [14]. The EUMETSAT
MetOp satellites that carry IASI instruments are in
sun-synchronous polar orbits, achieving near-global
coverage every 12 hours. There are three instru-
ments: IASI-A (2006–2021); IASI-B (2012–); and
IASI-C (2018–). Data from IASI-A was used in
this study, though it would be easy to utilise data
from the other IASI instruments.

2.2 The Linear Retrieval Algorithm

2.2.1 Summary

IASI provides spectral radiance measurements as
Brightness Temperatures (BT) in units of Kelvin.
The linear retrieval algorithm described in Walker
et al. [1] exploits the high spectral resolution of this
data, with all channels surrounding an SO2 absorp-
tion feature utilised. Comparison between channels
inside and outside the chosen absorption feature
fixes the spectral background, allowing the reduc-
tions in BT from the SO2 absorption feature to be
extracted. By assuming column amounts increase
linearly with reductions in BT, data from all the
spectral channels under consideration is combined
to form an optimal estimate of the SO2 column
amount. This algorithm was implemented using
the programming language Python and is described
below.
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2.2.2 Output and Inputs

Detailed here are the inputs required by the linear
retrieval and its output. A description and origin
for each parameter are listed below, with a sum-
mary provided in table 2.
The output is the total column amount of SO2

in Dobson Units (DU). This measures the number
of SO2 molecules within a vertical column of atmo-
sphere. 1DU = 2.69 × 1020 moleculesm−2. The
scalar x gives its value at a chosen pixel.

Spectral radiance measurements from IASI form
the primary input. These measurements are spe-
cific to the pixel being processed, unlike other in-
puts which remain the same for all applications of
the linear retrieval. The spectral measurements for
all n wavenumber channels under consideration are
gathered within the spectral vector y ∈ Rn. In
this case, channels in and around the ν1 absorption
feature from 1000–1200 cm−1 were considered, re-
sulting in n = 801 channels.
The total column amount of SO2 under standard

atmospheric conditions x0 was found using pressure
and SO2 concentration data from an equatorial at-
mospheric sounding. This climatological value was
calculated to be 0.0767DU by integrating the con-
centration measurements through a column of at-
mosphere, as described in appendix A.
The atmospheric sounding data was perturbed

and the resulting spectral measurements simulated
using the Reference Forward Model, a radiative
transport model described in Dudhia [15]. The be-
haviour of each yi within y in response to a change
in column amount around x0 was captured in the
Jacobian k ∈ Rn, the ith entry of which is dyi

dx .
A large ensemble of spectra from pixels experi-

encing normal atmospheric (climatological) concen-
trations of SO2 was used to calculate the ensemble
parameters y0 and Sϵ. The climatological spectral
vector y0 ∈ Rn represents the mean BT measure-
ments under these conditions. The covariance ma-
trix Sϵ ∈ Rn×n contains the joint variability be-
tween any two elements of the spectral vector y.
This is crucial for incorporating the random and
systematic errors of the spectral measurements into
an optimal unconstrained least squares estimate of
x. Further details on the spectral ensemble are dis-
cussed in section 2.3.

2.2.3 Linear Retrieval Calculation

Under an assumption of linearity, these parameters
are drawn together to construct the relation

y − y0 = (x− x0)k+ ϵrnd + ϵsys (1)

where the random and systematic errors have been
explicitly included as ϵrnd and ϵsys respectively.

The covariance matrix characterising these errors
is then used to provide an optimal unconstrained
least-squares estimate of x:

x = x0 +
(
kT Sϵ

−1 k
)−1

kT Sϵ
−1 (y − y0) . (2)

For the purpose of computational efficiency, the
linear retrieval was run simultaneously for a large
number of pixels. The matrix techniques used are
noted in Smith [16] and described in appendix B.

2.3 The Spectral Ensemble

2.3.1 Summary

A large ensemble of N spectra experiencing stan-
dard atmospheric concentrations of SO2 is required
for calculating the climatological spectral vector y0

and covariance matrix Sϵ. When running the lin-
ear retrieval, these ensemble parameters allow SO2

absorption to be separated from the spectral back-
ground, without needing to identify and subtract
the contributions from all local climatic parame-
ters. A first estimate for the spectral vector is
provided by y0, around which perturbations are
measured. The covariance matrix then provides
a weighting to each spectral channel’s contribu-
tion to the estimate of x, based on the system-
atic and random errors associated with that chan-
nel. Systematic errors arise from variability in cli-
matic parameters (e.g. temperature, cloudiness, in-
terfering species) within the ensemble. Random er-
rors are associated with the instrument noise and
are included in the covariance because climatologi-
cal SO2 levels generate signals significantly smaller
than this noise.

2.3.2 Ensemble Parameter Calculations

Consider an ensemble of N spectra (each denoted
yj for 1 ≤ j ≤ N) contained within a spectral
matrix Y ∈ Rn×N . Averaging the spectra in the
ensemble provides an estimate for y0:

y0 ≈ ȳ =
1

N

N∑
j=1

yj . (3)

The covariance matrix Sϵ is given by equation
(4), which can also be expressed using the spectral
matrix Y in equation (5).

Sϵ =
1

N − 1

N∑
j=1

(yj − ȳ) (yj − ȳ)T (4)

=
1

N − 1

(
Y − ȳ

(
1N

)T)(
Y − ȳ

(
1N

)T)T

(5)
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Table 2: A summary of the output and input parameters used by the linear retrieval. The dimension n is the number
of spectral channels under consideration, which was n = 801 for the ν1 linear retrieval.

Name Symbol Source Unit Dimension

SO2 column amount estimate x Linear retrieval output DU Scalar
BT spectral measurement vector y IASI K n

Climatological SO2 column amount x0 Atmospheric sounding DU Scalar
Jacobian k Reference Forward Model KDU−1 n

Climatological spectral vector y0 Spectral ensemble K n
Covariance matrix Sϵ Spectral ensemble K2 n× n

Here 1N is defined to be an N -dimensional vec-
tor for which every entry is unity. Multiplying
this expression out, noting that Y1N = N ȳ and(
1N

)T
1N = N yields

Sϵ =
1

N − 1

(
YYT −N ȳȳT

)
. (6)

As noted by Smith [16], the linearity of the terms
YYT and ȳ can be exploited when computing the
ensemble parameters. For details, see appendix C.

2.3.3 Ensemble Construction

Spectral ensembles were constructed from one
month of IASI-A data for each eruption case study,
as summarised in table 3. Although reasonable re-
sults can be obtained globally using any ensemble,
the month and location were matched as closely as
possible to those of the case study to ensure the
most accurate estimates. If the ensemble is con-
structed over non-arid regions, the effects of quartz
Reststrahlen will not be captured. In this case,
the ν1 linear retrieval will output negative column
amounts over arid regions.

To be sure the ensembles contained non-elevated
SO2 concentrations, proposed months and areas
were checked using the ν3 linear retrieval. In each
instance, the number of spectra with elevated con-
centrations of SO2 constituted less than 0.005% of
the total ensemble, providing confidence that clima-
tological conditions were represented. The ν3 linear
retrieval uses a spectral ensemble constructed over
the Atlantic Ocean [10].

2.4 Flagging Threshold

The SO2 column amount x returned by the lin-
ear retrieval should only be used as an indica-
tor of elevated SO2 concentrations. As such, a
threshold must be established to determine when
column amounts can be distinguished from back-
ground noise and be considered elevated. Pixels
above this value can then be flagged and separated
from the non-flagged pixels.

2.4.1 Flagging Protocol for ν3

Under climatological conditions, total column
amounts can be approximated to a Gaussian distri-
bution centred at x0. The column amount standard
deviation σ under these conditions is calculated us-
ing the covariance matrix and Jacobian:

σ =
(
kTSϵ

−1k
)− 1

2 . (7)

This can be used to set a flagging threshold xthresh:

xthresh = x0 + Zσ (8)

where Z is a chosen number of standard deviations
from x0. The ν3 linear retrieval takes Z = 5.1993,
resulting in a threshold of 0.4909DU [10]. This
corresponds to a false positive detection once per
10 million pixels processed if the background dis-
tribution is perfectly Gaussian. This provided high
confidence these flagged pixels corresponded to true
signatures and not random noise.

2.4.2 Flagging Protocol for ν1

Standard deviations for the ν1 spectral ensembles
used to study Nabro and Kelud are given in ta-
ble 3. These result in large thresholds of 6.31DU
and 7.05DU under the ν3 flagging protocol: suit-
able only for detecting the centre of volcanic clouds
shortly after an SO2-rich eruption. To adequately
flag volcanic clouds using the ν1 feature, a lower
threshold was calculated using a more lenient flag-
ging protocol.
By assuming the ν3 linear retrieval flagged all

instances of elevated SO2 and all flagged pixels cor-
responded to genuine detections (i.e. perfect sen-
sitivity and specificity), it was possible to validate
the performance of the ν1 linear retrieval. Based on
this validation, an “optimal threshold” for ν1 could
then be selected. As with any detection method,
the ν3 linear retrieval has imperfect specificity and
sensitivity (especially at low altitudes), but these
assumptions were deemed reasonable in the context
of volcanic cloud detection. Because the ν1 feature
is sensitive down to the surface, pixel location im-
pacted the noise level encountered and it was useful
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Table 3: Spectral ensembles used to calculate the covariance matrix and climatological spectral vector for the ν1
linear retrieval. The % Flagged column shows the fraction of these spectra that were flagged by the ν3 linear retrieval.

Case Study Month Latitude Longitude # Spectra N % Flagged Std. dev. σ

Nabro Feb 2012 5◦N–25◦N 10◦W–80◦E 1,010,578 0.0048% 1.198DU
Kelud Mar 2013 40◦S–5◦N 60◦E–150◦E 2,274,407 0.0032% 1.341DU

to adapt to this with different thresholds. A disad-
vantage of this method was its reliance on ν3 linear
retrieval validation data. If this were unavailable,
an alternative method would be to adapt the ν3
flagging protocol by using a smaller Z value.
The ν1 linear retrieval performance at a given

threshold was evaluated using a skill score formula.
This methodology has previously been used in stud-
ies classifying cloud and dust presence [17], [18]. To
best measure the ability to detect SO2 and avoid
false detections, a modified version of the True Test
Score (TSS) was used, given by equation (9). A
summary of the parameters used and their corre-
sponding binary classifications is given in table 4.
A weighting parameter w was introduced to con-

trol the relative importance of maximising true
positive detections and avoiding false negatives.
Smaller w values result in smaller optimal thresh-
olds and greater sensitivity, whereas larger values
have larger optimal thresholds and fewer false pos-
itives. Choosing this weighting was somewhat sub-
jective, but w > 1 was generally required. This was
because smaller thresholds increased the number
of genuine detections but also uniformly increased
random noise. Artificially low thresholds were then
favoured when w ≤ 1, due to a large fraction of
“true positive” classifications actually originating
from random noise located in volcanic clouds. Af-
ter a suitable weighting was chosen, the threshold
that maximised the TSS was deemed “optimal” and
was used to visualise the results.

TSS =

(
h

h+ u
− wf

f + z

)
× 100 (9)

Table 4: Parameters within the modified TSS equation.

Description Classification

h Flagged by ν1 and ν3 True positives
u Flagged by ν1 only False positives
f Flagged by ν3 only False negatives
z Flagged by neither True negatives
w Weighting parameter

2.5 Hit Rate

Once a suitable threshold was determined, a mea-
sure of the ν1 linear retrieval’s ability to detect vol-
canic clouds was needed. As before in section 2.4.2,

assumptions of perfect sensitivity and specificity al-
low the ν3 results to be used as a priori indicators
of elevated SO2. A Hit Rate (HR) —the percent-
age of pixels containing elevated SO2 that were cor-
rectly flagged by the ν1 linear retrieval— can then
be calculated using the h and u parameters within
table 4, as given by equation (10). Whilst this is
not a perfect measure of the ν1 linear retrieval per-
formance, it is a good indicator that can be easily
evaluated for each orbit.

HR =
h

h+ u
× 100 (10)

3 Results and Analysis

3.1 Speed and Threshold Determination

Before running the ν1 linear retrieval, the Jacobian
k, climatological column amount x0, climatological
spectral vector y0, and covariance matrix Sϵ were
calculated. Processing times were seconds–minutes
for k and x0. Depending on the ensemble size, 2–4
hours were needed to determine y0 and Sϵ.

The ν1 linear retrieval, run on the JASMIN su-
percomputer, processed IASI-A data for all lon-
gitudes within the latitude range 70◦S–70◦N for
the days following the Nabro 2011 and Kelud 2014
eruptions. Average processing times were ∼ 5.6ms
per spectra or ∼ 7 minutes per orbit. This speed is
similar to that of the ν3 linear retrieval [19].
Using the ν1 flagging protocol described in sec-

tion 2.4.2, “optimal thresholds” for several choices
of weighting factor w were calculated using data
from the first three days volcanic clouds were visi-
ble. After visualising the ν1 linear retrieval results
under these thresholds, it was found that for both
case studies the choice w = 5 gave a suitable bal-
ance between sensitivity and specificity. For more
details, see appendix D. The “optimal thresholds”
under this choice of w are summarised in table 5.
Also given are the resulting number of standard
deviations Z from x0 and the fraction fZ of pix-
els expected to be above threshold due to random
noise.

3.2 Nabro 2011 Case Study

Nabro is a volcano in Eritrea, close to the border
of Ethiopia. Previously thought to be inactive, the
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Table 5: The thresholds used by the linear retrievals.

Case Study w xthresh Z fZ
ν1 Nabro 5 3.54DU 2.89 1.9× 10−3

ν1 Kelud 5 2.80DU 2.03 2.1× 10−2

ν3 – 0.49DU 5.20 1.0× 10−7

volcano began erupting on the 12th June 2011. The
large SO2-rich volcanic clouds generated contained
a maximum SO2 loading of 1.6 ± 0.3Tg but com-
paratively small volumes of ash [20]. This made the
eruption ideal for studying the performance of the
linear retrieval without significant impact from the
ash absorption features that overlap the ν1 band.
The ability of the covariance matrix to suppress
quartz Reststrahlen over arid regions was also in-
vestigated since the centre of the cloud travelled
over the Sahara desert.

3.2.1 Volcanic Cloud Analysis

The pixels flagged by the ν1 and ν3 linear retrievals
between the 13th and 18th June 2014 are shown in
figure 1. The occasional gaps in the data are due
to the viewing angles and orbit of IASI, which pre-
vent full ground coverage when close to the equator.
The volcanic cloud travels northwest from Nabro,
covering Egypt. It then travels northeast before
dispersing over Asia. The volcano is seen to con-
tinuously erupt over this period.

For each image in figure 1, the hit rate of the
ν1 linear retrieval is calculated, as seen in figure
2. This is defined as the percentage of the pix-
els flagged by ν3 that were also flagged by ν1, as
given by equation (10). On the 13th June when the
volcanic cloud is small, the data is filtered to ex-
clude dispersed ν3 detections not connected to the
eruption that would otherwise skew the results. For
later days the clouds are large enough for this not to
be an issue. The hit rate for the total area imaged
gradually decreases from a maximum of ∼ 80% at
the beginning of the eruption to ∼ 30% as the vol-
canic cloud disperses. Strong agreement between
the linear retrievals is seen in the centre of volcanic
clouds, particularly when close to the volcano. Pix-
els flagged only by ν3 occur primarily at the fringes
of the clouds, where reduced SO2 column amounts
are not flagged due to the larger ν1 threshold. This
results in the main body and structure of the vol-
canic clouds being well-identified, but the edges of
the cloud being poorly constrained. The hit rate
of pixels within the Sahara is analysed in section
3.2.2.

Under a Gaussian distribution with σ =
1.198DU, 0.19% of background data would be ex-
pected to exceed the 3.54DU ν1 threshold, corre-

sponding to approximately 250 pixels per image.
Since the number of pixels flagged only by ν1 is
closer to 800 per image, a considerable fraction is
likely due to genuine low-altitude emissions that
were not flagged by the ν3 linear retrieval. Ei-
ther way, the majority of these pixels are scattered
across the image and do not appear to be part of the
volcanic cloud structure. This so-called “salt and
pepper” noise could be reduced by taking a larger
weighting parameter w and thus a larger thresh-
old, but this would reduce the sensitivity of the ν1
linear retrieval. An avenue for further work is to
construct a filtering algorithm that uses the num-
ber of neighbouring flagged pixels to remove this
noise whilst maintaining the sensitivity.

3.2.2 The Impact of Quartz Reststrahlen

If not properly accounted for in the ν1 covari-
ance matrix, spectral reflections from quartz over
arid regions cause negative offsets to SO2 column
amounts. The ν1 linear retrieval’s performance over
the Sahara is compared to its performance over the
total image in figure 2. The orange line shows
the hit rates for pixels within the latitude, longi-
tude limits 15◦N–30◦N, 0◦E–30◦E. For the 13th–
14th June these track well with the total perfor-
mance, but after this the Sahara hit rate drops to
20% below that of the total image hit rate and does
not recover. This indicates negative offsets to SO2

column amounts from quartz Reststrahlen remain,
resulting in a smaller proportion of pixels above the
ν1 threshold and a lower hit rate over the Sahara.
High SO2 column amounts prevent this from being
relevant near the beginning of the eruption, but
as the volcanic cloud disperses the negative offsets
force some pixels below the ν1 threshold.

Despite using a spectral ensemble that included
arid regions, it can be concluded that the quartz
Reststrahlen have not been fully suppressed. For
more accurate detections over arid regions, an alter-
native method could be to process them separately,
using a specially designed spectral ensemble. Such
an ensemble should take a smaller sampling area
and longer sample time to account for the quartz
features more accurately.

3.2.3 Other Features

Since the ν1 feature lies within an atmospheric win-
dow, some of the pixels flagged only by the ν1 lin-
ear retrieval correspond to true surface-level signals
that are impossible to detect using the ν3 linear re-
trieval. A persistent SO2 signal has previously been
identified in Tunisia [21] and can be seen in figure
1 from the recurring ν1 flags around (34◦N, 8◦E).
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Figure 1: Comparison between pixels flagged by the ν1 linear retrieval (purple and orange pixels, xthresh = 3.54DU)
and the ν3 linear retrieval (green and orange pixels, xthresh = 0.4909DU). The number of pixels corresponding to each
category is given in the legend of each image. IASI-A data for the first six days of the Nabro 2011 eruption is shown.
Each day has data from descending and ascending orbits, gathered at approximately 9:30 am and 9:30 pm (local time)
respectively. The volcano location is displayed as a red triangle.
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Figure 2: The hit rates calculated using equation (10)
for each image within figure 1. Data is taken from pixels
flagged within the total image (blue) and a subsection
of the image over the Sahara (orange).

This source was also identified in [10]. Other per-
sistent sources can be seen, the most notable at
(45◦N, 60◦E) in Uzbekistan/Kazakhstan. Flagged
pixels can be observed around the Persian Gulf,
particularly on 17th and 18th June. Although there
are few pixels flagged, they appear to follow the
coastline, making them unlikely to be due to ran-
dom noise. Many oil refineries in this area process
sulfur-rich “sour” crude oil (e.g. Dubai Crude [22]).
Loose clusters of detections around populous areas
of China and India may also be linked to indus-
trial activity, though this is less clear-cut. A study
spanning a longer duration is recommended, where
long-term averages can be used to verify the pres-
ence and persistence of these sulfur sources.

3.3 Kelud 2014 Case Study

Kelud (also commonly named Kelut) is a volcano
in Indonesia, on the island of Java. Between the
13th and 15th February 2014 it erupted explosively,
injecting volcanic ash and gas to altitudes of 16–
17 km [23]. This case study assesses the perfor-
mance of the ν1 linear retrieval under conditions
with a significant ash presence.

3.3.1 Volcanic Cloud Analysis

Comparisons between the pixels flagged by the ν1
and ν3 linear retrievals between the 14th and 17th

February 2014 are shown in figure 4. As with the
Nabro case study, there are occasional gaps due to
limited coverage from IASI near the equator. The
eruption began at approximately 22:30 local time
on 13th February. The volcanic cloud emerges on
the 14th, travelling southwest. A limb then de-
taches from the main body and drifts southeast,
dispersing over Southern Australia. The eruption
ends on the 15th. On the 16th, part of the cloud sur-

rounding the volcano begins travelling northeast.

The hit rates for each image in figure 4 are cal-
culated and displayed in figure 3. A similar trend
is observed to that of the Nabro eruption, with hit
rates > 50% early in the eruption gradually de-
creasing, in this case to ∼ 20%. Hit rates are gen-
erally slightly lower than those of Nabro despite
a lower threshold being used, though this is not
unsurprising given the extreme amounts of SO2 in-
jected by Nabro and its longer eruptive period. The
cloud that begins travelling Northeast on the 16th

has very few pixels flagged by the ν1 linear retrieval,
as does the limb travelling over Southern Australia.
The inability to detect the dispersing limbs of the
volcanic cloud suggests the ν1 linear retrieval is
poorly suited for monitoring SO2 for longer than
a few days after its injection into the atmosphere.

Figure 3: The hit rates calculated using equation (10)
for each image within figure 4.

Under a Gaussian distribution with σ =
1.341DU, 2.1% of background data would be ex-
pected to exceed the 2.80DU ν1 threshold, corre-
sponding to approximately 1400 pixels per image.
This is close to the number of pixels flagged only by
ν1, suggesting most correspond to random noise.

4 Conclusion

An SO2 linear retrieval algorithm using the ν1 ab-
sorption feature was developed and applied to erup-
tion case studies of Nabro 2011 and Kelud 2014.
Processing times were measured at ∼ 7 minutes
per orbit, allowing real-time applications of this
method. The percentages of pixels flagged by the
existing ν3 linear retrieval that were also flagged
by the ν1 linear retrieval were measured. These
were > 50% for the first 1–2 days imaged but grad-
ually decreased to 20–40% as the volcanic clouds
dispersed and column amounts dropped below the
threshold, as seen in figures 2 and 3. In both case
studies, the ν1 linear retrieval struggled to detect
the fringes and finer dispersion structures of the
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Figure 4: The same as figure 1 but with data pertaining to the first four days of the Kelud 2014 eruption. The ν1
threshold used is 2.80DU; the ν3 threshold remains 0.4909DU.

clouds. It also struggled to flag pixels over Saha-
ran regions in the Nabro study, with percentages
after the 15th of June reaching only 5–20%, likely
due to interfering spectral features from exposed
quartz. This was in spite of efforts to incorporate
them into the spectral ensemble. Despite the limi-
tations of the ν1 linear retrieval compared to its ν3
counterpart, figures 1 and 4 show success in iden-
tifying the presence and main structure of volcanic
clouds from major eruptions. There was good sen-
sitivity to SO2 soon after emission, such as in areas
surrounding the volcanoes while they were erupt-
ing and during the first 1–2 days, with reasonable
sensitivity several days following this. These results
suggest the ν1 linear retrieval is suited to initial vol-
canic hazard monitoring but unsuited to long-term
dispersal studies or monitoring small-scale volcanic
activity. The potential to adapt the method to
process data from the upcoming IRS instrument

should make this work of interest to Volcanic Ash
Advisory Centers that monitor volcanic hazards to
aviation. It would allow high spectral resolution
measurements of SO2 to be made with significantly
improved temporal resolution.

Further testing of the ν1 linear retrieval is sug-
gested for weaker eruptions and the latter stages
of major eruptions to establish when the technique
becomes fully insensitive to volcanic clouds. Ad-
ditionally, comparisons of the SO2 column amount
outputs to those of iterative algorithms would allow
the output accuracy to be quantified. To combat
the random “salt and pepper” noise present in the
results, a filter that removes isolated flagged pixels
not part of a larger cloud structure could be devel-
oped. Another avenue of future work is investigat-
ing the optimal number of spectra needed for the
spectral ensemble. Knowledge of the spatial and
temporal dependence of these ensembles would also
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aid their construction. When viewing arid regions,
the effects of quartz Reststrahlen were apparent, re-
ducing sensitivity to SO2 (figure 2). A specifically
designed ensemble could be constructed to better
account for the impact of these quartz features.
Such an ensemble would require a smaller sample
area and a sample time larger than one month and
could then be used for processing spectra from pre-
defined arid regions. The low-altitude sensitivity
of the ν1 feature allowed potential natural and an-
thropogenic SO2 sources to be identified (section
3.2.3). Long-term averaging would better constrain
their existence and magnitude. Finally, the forma-
tion of a complete, publicly accessible database of
the ν1 and ν3 linear retrieval results would allow
the wider research community to easily utilise this
data in their work.
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Appendices

A Calculation of Climatological Column
Amount

Calculating x0, the climatological column amount
of SO2, requires the molar concentration of SO2 as
a function of pressure v(p), obtained from an at-
mospheric sounding. Consider a vertical column of
atmosphere of unit area A. Thin horizontal slices
of thickness dp will each have some number of SO2

molecules dNSO2 . Focusing on a single slice at
pressure p, the number of air molecules in the slice
dNair is related to dNSO2 by:

dNSO2 = v(p) dNair. (11)

Introducing the mass of an average molecule of air
Mair and the mass of air within the slice dmair:

dNSO2 = v(p)
dmair

Mair
= v(p)

ρ(p)Adz

Mair
. (12)

Here ρ(p) is the density of air. Assuming the atmo-
sphere is in hydrostatic balance ( dp = −ρg dz):

dNSO2

A
=

−1

Mairg
v(p) dp. (13)

Integrating the expression and dividing by the Dob-
son Unit conversion factor D = 2.69× 1020:

x0 =
NSO2

AD
=

1

MairgD

∫ psurface

0
v(p) dp. (14)

This is easily computed using standard integration
packages.

B Simultaneous Linear Retrieval Calcu-
lations for Multiple Pixels

Total column amounts for M pixels may be calcu-
lated simultaneously through a simple extension of
the standard linear retrieval calculation described
by (2): x is replaced by x ∈ RM and y is replaced
by a matrix of spectra Y′ ∈ Rn×M . Simplifying the
notation using the gain vector g gives:

x = x01
M + g

(
Y′ − y0

(
1M

)T)
, (15)

g =
(
kT Sϵ

−1 k
)−1

kT Sϵ
−1. (16)

Here 1M ∈ RM is a vector for which every entry is
unity.

C Computational Calculation of Spec-
tral Ensemble Parameters

Equations (17) and (18) show the linearity of the
terms YYT and ȳ, which are used for calculating
the covariance matrix in equation (6). This can

be exploited, allowing two datasets A and B to be
easily combined. Since N ≫ n, constructing a run-
ning total of YYT ∈ Rn×n rather than forming the
much larger Y ∈ Rn×N improves computational ef-
ficiency and decreases memory requirements. Cal-
culations of YYT and ȳ were gradually updated
with a day of data at a time using this method.(

YYT
)
A+B

=
(
YYT

)
A
+

(
YYT

)
B

(17)

ȳA+B =
NAȳA +NBȳB

NA +NB
(18)

D Determining an “Optimal Threshold”

The dependence of the TSS metric on the flagging
threshold for the Nabro and Kelud case studies is
shown in figures 5 and 6. For w = 0.5 and 1, scores
remain high below a threshold of zero, demonstrat-
ing their poor ability to account for random noise.
Visual inspection of w = 2 showed that the noise
content remained too high to prevent significant
numbers of false detections. The choice w = 5
provided a reasonable compromise, though larger
values could be chosen if the noise content needed
to be reduced further.

Figure 5: TSS as a function of flagging threshold, ap-
plied to data from the first three days of the Nabro 2011
eruption. Each line has a different weighting parameter
w, with the threshold that maximises the TSS metric
given in parentheses within the legend.

Figure 6: The same as figure 5 but for data from the
first three days of the Kelud 2014 eruption.
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