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Abstract

This study presents a machine learning (ML) based approach to cloud detection and cloud-phase
classification over Greenland, a notoriously difficult region for existing passive imager detection and clas-
sification (DC) algorithms. Two Random Forest (RF) models, for daytime and nighttime, were trained
separately on Moderate Resolution Imaging Spectroradiometer (MODIS) spectral observations in a five-
year period (2013–2017), and were validated against Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) data. The RF models achieved significant improvements in performance compared to the cur-
rently operational MODIS cloud DC algorithms: 83.83% agreement with CALIOP for the RF nighttime
model and 87.98% agreement for the RF daytime model. The success of these ML models in Greenland
suggests a promising avenue for enhancing cloud classification in remote sensing, though challenges re-
main in generalising these models across all permanent ice surfaces, as evidenced by varied performance
in Antarctica in the highest altitude regions. More attention is needed in designing physically relevant
model inputs that can distinguish thin and low-lying clouds from the surface.

1 Introduction

Clouds are a fundamental component of the
Earth’s atmosphere and significantly influence radi-
ation balance and hydrological cycles, making their
accurate detection and classification important for a
multitude of atmospheric science pursuits. This work
is meant to aid the effort in creating long-term, high
quality cloud property datasets by synergising infor-
mation from different Earth Observation missions, an
effort spearheaded by the European Space Agency’s
Cloud Climate Change Initiative.

Cloud mask and phase information is often the
first step in obtaining cloud properties used in cli-
mate predictions — like cloud optical depth, cloud ef-
fective radius, and cloud-top temperature (see Baum
et al., 2012) — and so, inaccuracies in cloud-phase
classifications lead to large uncertainties in predic-
tions. Additionally, misclassification of cloud cover
poses challenges to aerosol detection algorithms, as
even minimal cloud contamination can lead to inac-
curately high aerosol optical depth (AOD) retrievals,
significantly impacting downstream retrieval prod-
ucts and scientific analyses, as detailed by Remer
et al., 2005.

A particularly notable cloud-phase detection
and classification (DC) product, and relevant to
this study, is the Moderate Resolution Imaging
Spectroradiometer (MODIS) Cloud Properties prod-
uct. Operational algorithms for cloud-masking (Frey
et al., 2008; Ackerman et al., 2008) and cloud-
phase classification (Platnick et al., 2017; Marchant
et al., 2016) have been developed, but they exhibit
significant weaknesses, especially in classifying cloud-
phase over permanent snow or ice surfaces. MODIS
has been shown to misclassify as much as 20% of

clouds over the Arctic and as much as 30% over
Greenland as clear (Chan and Comiso, 2013). Statis-
tics from this work corroborate these findings, as
shown in figure 1.
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Figure 1: Contingency table showing MODIS vs
CALIOP phase agreement over Greenland, 2013–2017,
for the two MODIS algorithms using infrared and opti-
cal bands, respectively. The overall phase agreement of
the all-day MODIS algorithm with CALIOP is 52%, and
that of the day-only algorithm is 71%.

These algorithms include decision-tree structures
and voting systems involving manually-tuned tests
and thresholds that are empirically selected based on
the developer’s experience and access to validation
datasets. The manually-set thresholds are sensitive
to instrument-specific characteristics, such as spec-
tral band-pass, noise profile, and viewing angle. Ad-
ditionally, the geographical and temporal limitations
of data used in the tuning process pose challenges for
global or annual applications, with noticeable biases
when applied beyond the region or season the algo-
rithm was made for. Even if the data used for tuning
is global, the rigidity of the decision-tree means that
performance drops in regions with extreme surface
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conditions, such as Greenland.

In contrast, machine-learning (ML)-based DC al-
gorithms could prove to be an efficient and flex-
ible approach. By finding non-obvious relation-
ships between predictors and the classified categories,
ML models eliminate the need for manually defined
thresholds or predetermined spectral patterns that
have to be matched to specific atmospheric features.
This allows larger and more diverse feature-sets to
be take into consideration in the classification at al-
most no incremental cost. This has been successfully
achieved in many remote sensing applications, but
most notably, and relevant to this work, examples in-
clude cloud-phase classification — Wang et al., 2020
— and aerosol classification — Lee et al., 2021.

This project aims to determine the applicability
of ML-based cloud-phase classification over Green-
land, a region that poses particular difficulties to the
current hand-tuned DC algorithms. The difficulty
in accurate cloud-phase detection is caused by the
high reflectivity of the high-altitude Greenland ice
sheet and the poor contrast between the surface and
clouds in the infrared bands. Cloud-Aerosol Lidar
with Orthogonal Polarisation (CALIOP) data will
be considered ground truth and used for the evalua-
tion of the ML model. Active instruments are widely
used for validation in remote sensing, as they often
offer a different suite of physically relevant observa-
tions than passive sensors, and CALIOP in particu-
lar is considered to be one of the best space-based
cloud detection systems for the Arctic region (Chan
and Comiso, 2013). Descriptions of instrument ca-
pabilities will be given in section 2, along with the
methods used for compiling and cleaning the train-
ing and validation data. Details on model training
and evaluation are presented in section 3. In section
4, limitations of the models will be discussed, along
with further work to be done. The conclusions are
presented in section 5.

2 Data

This section will go into detail on how CALIOP
measurements are used as reference labels for the ML
models, how MODIS data is used as the model in-
put and present the performance of the hand-tuned
decision tree algorithm implemented by the MODIS
atmosphere team over Greenland. All satellite data
used in this work has been taken from the Centre for
Environmental Data Analysis (CEDA) archive con-
nected to the JASMIN supercomputer, the UK’s data
analysis facility for environmental science.

2.1 Collocation

Collocation is the process of finding the mea-
surements from both satellites that are in the same
place, at roughly the same time. Because MODIS

and CALIOP are on board satellites that share an
orbit, passing above the same location with just a
two-minute delay, this step is relatively straightfor-
ward. For each CALIOP orbit with data over Green-
land, MODIS images captured within the relevant
time interval are searched for, taking the time delay
of the satellites into consideration. Once the MODIS
images that might completely envelop the CALIOP
measurements are found, each CALIOP measure-
ment is assigned a single MODIS pixel based on the
closest distance. See figure 2 for a graphical repre-
sentation.

Collocation, 6AM UTC, 07/02/2017

CALIOP track

A2017038.0600

A2017038.0605

Figure 2: Collocation of CALIOP measurements and
MODIS pixels over Greenland. The pixel sizes are exag-
gerated and their density is reduced for illustration pur-
poses. Two MODIS images, shown in different colours,
were needed for the collocation of the full CALIOP over-
pass in this case.

Distances are calculated with the formula

D = R
√
∆ϕ2 + (cosϕm∆λ)2, (1)

where R is Earth’s average radius, ∆ϕ and ∆λ are
the latitude and longitude differences in radians,
and ϕm is the mean latitude. This is a flat-surface
distance formula that takes into account the vari-
ation in distance between meridians with latitude,
and it is a fast and fairly accurate approximation
for points on the Earth spheroid not far from each
other. The combination of granule timestamp (for
example 2017-01-01T13-23-09 for CALIOP and
A2017001.1325 for MODIS) and measurement ID
within the file is saved in a collocation database for
later use, and it uniquely links every CALIOP mea-
surement over the icy surface of Greenland to the
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closest MODIS pixel in both space and time.

2.2 Reference labels of pixels

Active instruments are widely used for validation
in remote sensing, as they are considered to be more
accurate than passive sensing instruments at identi-
fying atmospheric features. Cloud-phase classifica-
tions from the CALIOP instrument are used as ref-
erence labels for the ML models in this study due to
its accuracy and long mission time.

2.2.1 CALIOP instrument description

CALIOP is a two-wavelength lidar (532 nm and
1064 nm) providing high-resolution vertical profiles of
the atmosphere. The sensor is on board the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servations (CALIPSO) satellite, which was part of
the A-Train satellite constellation from 2006 until
2018. The A-Train is a group of satellites with
complementary cloud-observing capabilities, follow-
ing very close orbits to each other. CALIPSO is in a
nearly-polar (98.22 degrees inclination), circular sun-
synchronous orbit, crossing the equator northwards
at about 13:30 local time (Winker et al., 2009). The
instrument uses laser pulse time-of-flight to deter-
mine the position of atmospheric features, with a ver-
tical resolution of 30m in the troposphere and 60m
in the stratosphere. The lidar measures attenuated
backscatter intensities at both wavelengths and de-
polarisation ratio for the 532 nm band. This data is
used to accurately identify atmospheric features like
aerosols and clouds.

2.2.2 Data product description and label
quality control

This section will present the relevant data in this
product and how a quality control process is ap-
plied to produce accurate reference labels for the ML
model. Some needed terminology:

• Level 1 refers to information obtained directly
from the satellite, with minimal processing (e.g.
calibration adjustments).

• Level 2 refers to data products that have been ob-
tained as a result of extensive processing after the
data has been beamed back to Earth. The spatial
and temporal formats of the data are preserved.

• Profile refers to all vertical information retrieved
by CALIOP at a certain location and time. In
level 1 data, a profile will contain various proper-
ties like perpendicular and parallel backscatter co-
efficients as a function of height, geolocation, time
and spacecraft geometry information. In level 2
data products, a profile can have multiple layers
and additionally hold column properties, such as
column aerosol optical depth.

• Layer refers to an atmospheric feature (aerosol

or cloud) detected by the level 2 processing algo-
rithms, and contains spatial and optical character-
istics of the feature found. Examples of spatial fea-
tures are layer base and top altitudes. Examples
of optical layer properties are integrated attenu-
ated backscatter and optical depth. Furthermore,
each layer is classified as aerosol or cloud, and sub-
classified into aerosol type (such as smoke, dust,
sulphites etc.), cloud type (such as altocumulus,
cirrus etc.) and more importantly for this project,
cloud-phase. The CALIOP cloud-phase categories
are Water, Ice, Oriented ice and Unknown. For a
simplified, albeit fictitious, representation of layers
within profiles, see figure 3.
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2
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Cloud layers 1 3 2 1 2 0 1 2

Aerosol layers 0 1 2 0 0 0 1 0

Ice cloud

5km Profile Number
Altitude (km)

AerosolWater cloud

Figure 3: Illustration of CALIOP profiles and layers.
The number of cloud and aerosol layers in each profile is
shown. The method of assigning classifications to each
profile using this information is explained in detail in ap-
pendix A.

The CALIOP data used in this study comes
from the level 2 5 km “Merged Layer” prod-
uct, version 4.51 (newest at the time of writ-
ing). The CALIOP layer detection algorithm
is described in Vaughan et al., 2009, and de-
scriptions of the datasets contained within the
LID_L2_05kmMLay-Standard-V4-51 product can be
found on the NASA CALIPSO mission website,
NASA-LaRC, 2024.

A multi-step quality control process is applied to
the CALIOP data to ensure that the reference label
accuracy is as high as possible. This process is a
stricter and expanded version of the one presented in
Wang et al., 2020. At the end of the process, each
profile should be classified as one of the Water, Ice,
Clear categories (see figure 4 for a diagram). For ex-
ample, in the situation presented in figure 3, profiles
2, 3, and 7 and contaminated by aerosols, and elim-
inated. Profile 6 is Clear. Profiles 1 and 4 are Ice,
and if the aerosol layer in profile 7 turns out to be
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of negligible optical depth, profile 7 would be Water.
Profiles 5 and 8 are classified as Mixed multilayer

at first, and subsequently reclassified as Water, Ice

or Ambiguous. A more detailed breakdown of the
process is given in appendix A.

Aerosol free (AOD < 0.05) and
valid profiles
N = 2 082 743

High quality cloud layers
(CAD > 70) and phase
(phase_QA_flag = 3)

N = 1 924 907

Eliminate "Unknown"
classifications
N = 1 890 867

Reclassify "Mixed Multilayer" as
"Water", "Ice" or "Ambiguous",

and remove the latter
N = 1 835 453

CALIOP profile quality control

Only keep (MODIS classified) valid cloud top temperature and
pressure values
N = 1 829 601

Only daytime pixels
N = 791 676

Only nighttime pixels 
N = 1 027 119

Drop all other missing values
N = 992 561

Drop all other missing values
N = 769 366

RF nighttime model
stepwise feature selection

RF daytime model
stepwise feature selection

MODIS pixel quality control

Collocated pixels over
Greenland's ice sheet during

2013-2017
N = 2 222 812

Figure 4: The quality control process applied to collocated measurements of CALIOP and MODIS. The number of
remaining datapoints N is shown at every step.

2.3 Model input

Data from the MODIS instrument on board
NASA’s Aqua satellite orbiting in the A-Train is used
as the model input. MODIS has been chosen for this
project because it has been producing high-coverage
rich spectral information relevant to cloud properties
throughout its long mission time (20+ years), and
because of its shared orbit with the most accurate
space lidar sensor to date, CALIOP.

2.3.1 MODIS instrument description

MODIS is a whisk-broom sensor, in which a rotating
mirror is scanning across-track, collecting a small ar-
ray of along-track pixels at a time. The sensor pro-
vides radiance data for each pixel in 36 bands across
the optical and infrared spectrum (410 nm to 14 µm),
at various spatial resolutions. The constant stream

of data is divided into granules for ease of data han-
dling. A typical granule at 1 km ground resolution
is an array of 2030 by 1354 pixels, but this study
is using 5 km MODIS products (or subsampled 1 km
products), which results in images with a size of 406
by 270 pixels.

2.3.2 Data product description and MODIS
pixel quality control

In nighttime, only MODIS’s emissivity bands (20–
36, excluding 26) can be used. In daytime, the
reflectivity bands (1–19 and 26) can also be used.
The radiance data is subsampled at 5 km resolution
from the level 1 1 km product MYD021km. Cloud top
temperature and pressure are often strong predictors
of cloud-phase, and so these are obtained from the
cloud-property level 2 MODIS product, MYD06_L2.
These values are not to be trusted blindly, as they
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depend on the current MODIS cloud-phase classifica-
tion algorithm. However, they are useful additional
information the model can take into consideration.
Surface temperatures contribute to the retrieved in-
frared radiances and interfere with the identification
of cloud-phase. Thus, the surface temperature during
daytime and nighttime is obtained from the level 3 8-
day composite product MYD11A2, and added as a fea-
ture of the dataset. Having knowledge of the surface
temperature in conjunction with top-of-atmosphere
radiances should give more cloud-surface discrimina-
tion power to the model. Geolocation, timing and
geometry information is also retrieved. This includes
the latitude, longitude, viewing zenith angle (VZA)
and solar zenith angle (SZA) for every pixel. VZA
has been shown to affect many of the cloud proper-
ties retrieved by MODIS (Maddux et al., 2010) and
is an unavoidable artefact, as is SZA dependency,
and are important enough to include. Finally, only
pixels over permanent snow or ice are kept. The sur-
face type can be obtained from both CALIOP and
MODIS datasets, but the annual L3 MODIS product
MCD12C1 was chosen because of its reliability com-
pared to the instantaneous CALIOP surface classifi-
cation.

2.4 Existing MODIS cloud-phase classifi-
cation algorithms

The MODIS cloud product MYD06_L2 contains a
variety of useful cloud properties, including cloud-
phase classification for every pixel. There are two
main algorithms producing these classifications. The
first only uses infrared bands and produces classifi-
cations in both daytime and nighttime; this will be
referred to as the MYD06 IR algorithm from now
on, and it is explained in detail by Baum et al., 2012.
The second algorithm additionally makes use of op-
tical and short-wave infrared bands, and is only ap-
plied to pixels captured in daytime — defined as
pixels with a SZA value of less than 81.36 degrees;
this will be referred to as the MYD06 OP algorithm
from now on, and it is explained in detail by Plat-
nick et al., 2017. The phase agreement of these algo-
rithms with collocated CALIOP classifications over
the ice surface of Greenland during a five year pe-
riod (2013–2017) is shown in figure 1. The MYD06
IR algorithm classifies a large fraction of CALIOP–
identified water clouds as Undetermined, and both
algorithms have trouble distinguishing clear scenes
from ice clouds. The overall phase agreement of
MYD06 IR with CALIOP is 52%, and that of the
MYD06 OP algorithm is 71%, suggesting that the
extra information found in the optical bands signifi-
cantly improves the classification ability. Apart from
the inherent limitation of the rigid structure deci-
sion tree algorithms that do not take into account

extreme surface conditions, the poor discrimination
between clear and ice-cloudy pixels can, to a large ex-
tent, be attributed to a severe defect in the MODIS
Aqua 1.6 µm detector. The 1.6 micron band plays
a crucial role for cloud-property retrieval over snow
and ice surfaces (see Platnick et al., 2001) since snow
typically has much lower albedo in this band. Efforts
have been made, successfully, to restore the MODIS
Aqua 1.6 micron band (see Gladkova et al., 2011) us-
ing neighbouring band information, but due to time
constraints, the technique was not used in this work.

3 Model training and validation

Two models were trained: a nighttime model only
using infrared bands, and a daytime model using
both infrared and optical bands. This is done both
to get the most out of the optical information during
the day and to have the ability of direct comparison
to the MYD06 IR and MYD06 OP algorithms. Sub-
section 3.1 introduces the ML model chosen for this
project, 3.2 details the train-test data splitting pro-
cedure, 3.3 presents the choices made in feature en-
gineering, 3.4 the process of feature subset selection,
3.5 details hyperparameter tuning and 3.6 presents
the final model performances.

3.1 Model selection and parameters

There is a wide range of “off-the-shelf” machine
learning models to choose from for classification
problems, and the selection and parameter tuning is
both an art and a science. The choice for this project
is a Random Forest Classifier (RF), as inspired by a
successful ML-powered approach at cloud-phase clas-
sification by Wang et al., 2020. Random forests have
been shown to largely correct for the pitfalls of single
decision tree classifiers (Ji and Ma, 1997).
RF is an ensemble classification technique, using mul-
tiple instances of a basic classifier unit, the deci-
sion tree. A decision tree is composed of nodes and
leaves: a leaf contains one of the possible classifi-
cation results, and a node contains a binary con-
dition on a feature of the dataset that subsets the
space of datapoints, for example a condition might
be BT(11) > 270K, where BT(11) stands for the
brightness temperature of the 11 micron band. When
using a decision tree to predict the class of a particu-
lar datapoint, starting with the root node, a route is
followed that meets the condition at each node, until
it eventually reaches a leaf containing the classifica-
tion result.
In the RF algorithm, the trees are grown indepen-
dently on random samples of the data set, and a set
of tricks is used to decorrelate the trees. More details
on how the RF algorithm works are given in appendix
B, along with a visualisation of the first few levels of
a decision tree.
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The RF has several parameters that need to be hand-
picked based on the situation. A few parameters (tree
depth, number of trees in the forest and minimum
number of samples at a leaf node) will be varied for
the highest preforming feature set.

3.2 Train-test data split

To make sure the performance of the model is
evaluated without bias, the data that has survived
quality control is divided into three groups, training,
validation and test. The training set is only used for
training the models, the validation set is used to eval-
uate model performance in the intermediary steps
(feature selection and hyperparameter optimisation)
and the test set is only used at the end, to provide
the final evaluation for the model. The method of
splitting needs to be given some thought. A natu-
ral suggestion is to use some full years of data for
the training and some different years for the test (for
example, train on 2013-2016, test on 2017). How-
ever, instrument electronics characteristics drift as
they age and might introduce, over long periods of
time, significant biases. The opposite approach, pick-
ing a certain percentage of measurements at random
to be in the test set and letting the rest be in the
training set is also problematic, because of spatial au-
tocorrelation. Given the spatial nature of the data,
measurements close to each other will have a high
degree of correlation (for example multiple measure-
ments in different areas of the same cloud). This
effectively “leaks” information from the test set into
the training set, as many data points are too similar.
This is a known problem in geosciences, see for exam-
ple Ploton et al., 2020, and causes the overestimation
of the predictive performance of the model. To avoid
this problem, the split of training and testing data
is done as following: for every block of 20 consecu-
tive days, days 19 to 20 (roughly 10%) are put in the
test set and not seen until the final model evaluation.
The remaining data is split into training and valida-
tion sets in a similar way: for each 20-day block, days
17-20 (roughly 20% of non-test samples) are put in
the validation set and the rest are put in the training
set. The resulting split is graphically represented in
figure 5 for a selected 3-month stretch.

Figure 5: Graphical representation of the training (blue),
validation (orange) and test (green) data splits. Each
stripe represents a full day of data.

3.3 Feature engineering

The creation of a new set of predictors derived
from the original data can sometimes help the model
recognise deeper relationships that could only be ex-
plored by increasing the number of internal parame-
ters. In the context of this project, there are physi-
cally relevant quantities that could prove better pre-
dictors than just the radiances from MODIS. Draw-
ing inspiration from the MYD06 algorithms (Baum
et al., 2012 and Platnick et al., 2017), several engi-
neered predictors were added to the dataset, and they
proved to be quite relevant. These are the bright-
ness temperatures of selected bands (7.3 µm, 8.5 µm,
12 µm and 11 µm) obtained from radiance values by
inverting Planck’s law, see equation 2.

BT(λ) =
hc

kBλ
ln−1

(
1 +

2hc2

Rλλ5

)
, (2)

where Rλ stands for the radiance at wavelength λ.
The terms h, c and kB are physical constants with
their usual meaning.

The brightness temperature differences between
several bands are also used in the MYD06 IR al-
gorithm, for example BTD(8.5, 11) = BT(8.5) −
BT(11) (sensitive to ice clouds) and BTD(7.3, 11) =
BT(7.3) − BT(11) (helps separate high clouds from
low clouds). The NASA researchers have identi-
fied even better predictors, the so called beta pa-
rameter (invented by Parol et al., 1991), defined as

β =
ln(1−εy)
ln(1−εx)

, where εx and εy are the cloud emissivi-
ties in bands x and y. Unfortunately, there are a lot
of missing pixels in the MODIS emissivity datasets
and so the beta parameter could not be reconstructed
in time.

3.4 Feature selection and importance

Some features have more predicting power than
others, and some features might add needless com-
plexity and noise to the data. This warrants design-
ing a process that selects the most relevant features.
In theory, all possible subsets of features should be
tested and the one that gives the highest performance
is chosen. In practice, this is an impossibility when
dealing with a large number of available features N ,
as the number of unique subsets is 2N . To reduce
the cost of this search, a technique called Stepwise
Feature Selection is used. At each step, a pool of un-
used predictors is considered. From this set, a single
predictor producing the largest increase in the per-
formance metric is chosen and added to the model.
This is repeated until the desired number of predic-
tors is reached. Appendix C contains figure 11, a
diagram of the process.
The best model in a set is chosen by using a perfor-
mance metric. This cannot be the training accuracy,
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as it will lead to overfitting on the training set. The
test accuracy cannot be used either, because infor-
mation about the test set is leaked into the model
before it is supposed to see it — and the predictors
that happen to be the best for the test set will be cho-
sen. A separate validation set is used for this scoring,
obtained with the method described in the previous
section, to reduce the effect of spatial autocorrela-
tion. The stepwise feature selection algorithm, while
a guided search through model space, is not guaran-
teed to find the best model out of 2N , but is worth
the reduction in computational cost.
Ten features were selected for each model type; see
figure 6 for the ordered lists of selected predictors,
from the most to the least important.
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Figure 6: The sets of ten predictors arrived at by the
Stepwise Feature Selector for each model, in the order
of their relative importance. The importance score of a
feature can be roughly interpreted as the loss in model
accuracy, were that feature to be removed.

3.5 Hyperparameter grid search

Having found the optimal feature set using the
stepwise feature selection algorithm, further optimi-
sation can be achieved by tuning the model param-
eters. The most straightforward method is a hyper-
parameter grid search, where the model is trained
and scored (on the validation set) for many values of
model parameters. The three parameters varied in
this search were maximum tree depth Ndepth, with
values from 10 to unlimited, number of trees in the
forest Ntrees, with values from 50 to 500, and the
number of minimum samples at a leaf node Nleaf,
with values from 1 to 20. See appendix D for the
model performance for these values. The param-
eters that gave the highest validation scores were
Ndepth = 40, Ntrees = 500 and Nleaf = 2 for the night-
time model and Ndepth = Unlimited, Ntrees = 500
and Nleaf = 2 for the daytime model.

3.6 Results

Training the models with the best features and
with the optimised hyperparameters and scoring
them on the previously unseen test set yields a
85.23% accuracy for the RF nighttime model and
89.06% accuracy for the RF daytime model. See fig-
ure 7 for the confusion matrices. For a more realis-
tic performance, an Undetermined category can be
added back; pixels classified as one of the Water, Ice
or Clear categories with low confidence (probabil-
ity less than 50%) are moved to the Undetermined

category. This results in 83.83% accuracy for the
RF nighttime model and 87.98% accuracy for the RF
daytime model, with about 3% of pixels being moved
to the Undetermined category due to low confidence.
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Undet

R
F

0.84 0.02 0.11

0.02 0.79 0.02

0.11 0.12 0.85

0.03 0.06 0.02

RF nighttime

Clear Water Ice
CALIOP

0.93 0.02 0.12
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0.04 0.06 0.81

0.02 0.03 0.02

RF daytime

Figure 7: The performance of the two models over
Greenland.

The performance of the Greenland-trained mod-
els was also tested on data over Antarctica in the
same time period, 2013 to 2017. The Antarctica data
went through the same quality control and feature
engineering processes described previously. The RF
nighttime model exhibits a significant reduction in
predictive performance (down to 75.39%) while the
RF daytime model scored 85.23%, a more modest
decrease. Possible reasons for the performance drop
and other limitations of the project are discussed in
the next section.

4 Discussion and further work
While the classification performed by both RF

models significantly outperform the MYD06 algo-
rithms, the project has some limitations. The first
is that the model cannot be confidently applied to
all MODIS pixels in an image, but only to a narrow
band (±10 degrees) around the nadir pixels. This is
because CALIOP is a near-nadir (3 degrees) view-
ing instrument, and due to its shared orbit with
MODIS, most collocated pixels have a small MODIS
view zenith angle (VZA). As it has been established
by Maddux et al., 2010, MODIS data exhibits VZA
dependency, therefore making any classifications at
VZA values outside of those in the training range
less certain. This is not as drastic for permanent ice
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and snow surfaces, as their location at high latitudes
means that there is a relatively large density of orbit
overpasses, and even thin strips around the MODIS
nadir pixels produce decent coverage — this is not
the case for mid and low latitudes.
Investigating the properties of clouds which have
been misclassified by the RF models should give some
clues on the kinds of spectral predictors to be added

for increased performance. The RF models struggle
to correctly classify all but the highest and thick-
est clouds — of all misclassified clouds, most are
thin and close to the surface. The high-altitude thin
clouds are also frequently missed, especially by the
daytime model. Figure 8 shows smoothed histograms
of the correctly classified and misclassified pixels over
Greenland.
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Figure 8: Two-dimensional kernel density plots of the correctly and incorrectly classified cloudy pixels.

The experiment over Antarctica has also shown
that the Greenland-trained models, while still out-
performing the MYD06 algorithms, are not as gen-
erally competent at classifying cloud-phase over all
ice surfaces as it was hoped. It is apparent there is
a degree of overfitting to the Greenland data. Al-
though the Arctic cloud make-up is known to have
a large amount of mixed multi-layered clouds (see
Shupe, 2002) compared to Antarctica, the drop in
performance has a different reason, and it seems to
be location dependent — see figure 9. The high al-
titude regions (above 3 km) are challenging for the
model, as it was trained only on ice surfaces up to
this altitude in Greenland. Training the models on
all ice surfaces globally could solve this problem, and
so could perhaps including elevation in the predic-
tor set. The high altitude ice sheets are colder and
therefore more easily confused with clouds, especially
if they are thin and close to said surface. Another
way of decreasing the models’ bias towards Green-
land, at greater computational cost, is to perform
K-fold cross-validation for all the intermediary steps
(stepwise feature selection and hyperparameter grid
search) instead of using a predetermined validation
set.
The focus of further work should therefore be the en-
gineering of better predictors that can separate the
spectral signatures of the cold surface from that of

clouds — especially for thin and low-lying clouds.
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Figure 9: The accuracy of the Greenland-trained RF
nighttime model is the lowest in the highest altitude re-
gions of Antarctica. A few terrain contour lines are shown,
with altitude units in kilometers.
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The inclusion of the beta parameters as discussed
in Baum et al., 2012 is a priority, as well as the recon-
struction of the 1.6 µm Aqua MODIS band with help
from Gladkova et al., 2011. Other avenues of further
investigation will be more evident if the models are
biased towards the Clear class — the majority of
misclassifications will then be of real clouds, whose
properties can be studied using CALIOP. Overall,
better signal to noise ratios can be obtained by av-
eraging the MODIS spectral values from 1 km reso-
lution to 5 km, not just keeping the middle sub-pixel
in the 5× 5 grid. It is also worth trying other types
of classifiers, such as deep neural networks, which do
better when the data is not linearly separable, but
are less interpretable.

5 Conclusion

Two RF models were trained to give pixels classi-
fications of cloud-mask and cloud-phase over Green-
land by using MODIS 5 km spectral observations. A
nighttime model using infrared bands between 3.9 µm
and 14.2 µm and a daytime model using short-wave
infrared (SWIR) and infrared bands between 0.9 µm
and 8.5 µm were trained separately. The reference la-
bels for pixels are obtained from collocated CALIOP
level 2 5 km merged layer product data for the period
of 2013–2017, by applying a strict quality control pro-
cess. Additional physically relevant predictors were
created by processing and combining spectral infor-
mation from different bands, and a subset of the most
potent predictors was systematically chosen by us-
ing a stepwise feature selection algorithm. The data
was carefully split into training, validation and test
sets in a way that minimises spatial autocorrelation,
and the performance of the models was evaluated on
the test set only at the end of the tuning process
to produce an unbiased score. The model configu-
ration — its hyperparameters — were optimised by
doing a grid search over a range of values. The final
models use 10 predictors each and exhibit great per-
formance over ice surfaces: 83.83% agreement with
CALIOP for the RF nighttime model and 87.98%
agreement for the RF daytime model, with about 3%
of pixels left undetermined by both models. Compare
this to the MODIS cloud product algorithms perfor-
mance of 52.06% for the all-day infrared algorithm
and 71.22% for the daylight-only algorithm, which
leave about 21% and 4% of pixels undetermined, re-
spectively. In terms of the types of clouds that are
frequently missed by the models, both models tend to
inaccurately classify geometrically thin clouds close
to the surface, whereas the daytime RF model also
encounters difficulties with high-altitude thin clouds.
The models trained on Greenland have incomplete
carry-over when tested on Antarctica, with a drop in

CALIOP agreement scores: 75.39% for the RF night-
time model and 85.23% for the RF daytime model
— still outperforming the MODIS cloud-phase algo-
rithms in the region. More sophisticated ways to sys-
tematically select the predictor and hyperparameter
can help reduce the discrepancy, but the different to-
pographies and weather systems in Antarctica versus
the Arctic warrant training a new set of models on all
permanent ice surfaces globally. Further work should
be focused on feature engineering of physically rele-
vant predictors and reconstructing the information
from the missing 1.6 µm Aqua MODIS band. Clues
for further investigation can be obtained by bias-
ing the RF models towards correctly classifying clear
scenes, and exploring the properties of the misclas-
sified clouds using data from CALIOP. Overall, this
work proves the great potential of machine learning
algorithms for cloud detection and cloud-phase clas-
sification using passive imager spectral information
with the help of more accurate active instruments
like CALIOP.
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Appendices

A Detailed quality control process

The first step is to eliminate profiles contaminated with aerosols, as it is known to interfere with cloud
retrieval in passive sensing applications. As such, only aerosol-free profiles are kept, defined as profiles
having a column aerosol optical depth (AOD) smaller than 0.05. Profiles 2, 3, and 7 in figure 3 would be
eliminated, for example.
Each layer is also given a cloud-aerosol discrimination (CAD) score by a feature detection algorithm de-
scribed in detail in Liu et al., 2019. Only profiles containing layers with a CAD score larger than 70 out of
100 are kept, which signify high-confidence cloud detection.
Each layer classified as cloudy is further given a phase classification (Water, Ice, Oriented ice and
Unknown). With this classification comes a set of quality assurance flags, from 0 (no/low confidence) to
3 (high confidence) for cloud-phase. Only profiles containing relevant layers with the highest quality assur-
ance are kept.
Aerosol-free profiles are classified as Clear only if they contain no detected feature layers — only profile 6 in
figure 3 would be classified as Clear. Aerosol-free profiles are classified as Water if they only contain cloud
layers with CAD > 70 with a water phase classification of the highest quality (quality assurance flag has a
value of 3). The same is done for the Ice classification — profiles 1 and 4 would qualify. However, there
are a significant amount of profiles (about 10-15% over Greenland) that contain some layers classified as
water clouds, and some layers classified as ice clouds: these are temporarily saved as a Mixed multilayer

classification — these would be profiles 5 and 8.
Testing has shown that the ML model with MODIS data as input is poor at distinguishing between the
Mixed multilayer type and the Water and Ice types, whereas Water and Ice types are reliably predicted.
This is not surprising, passive imagers struggle to extract vertical information, even using clever techniques
like CO2 slicing and Infrared Window, as explained in Baum et al., 2012. Instead of discarding a significant
number of profiles classified as Mixed multilayer, a decision process was created to reclassify some of them
as Water or Ice. Any Mixed multilayer profile will be determined to be water-dominant or ice-dominant
by using their respective layers’ integrated attenuated backscatter (IAB) coefficient as a proxy for quantity
of water or ice content in the profile. More specifically, if the ratio of the total IAB in the ice layers to the
total IAB in the water layers is greater than a manually chosen threshold of 5, then the profile is reclassified
as ice. If the inverse of this ratio is larger than 5, then the profile is reclassified as water. If none of these
conditions are met, the cloud-phase is considered ambiguous and the profile is discarded.

for every Mixed multilayer profile:

ratio =

∑
ice IABlayer∑

water IABlayer

if ratio > 5, profile is ice

if ratio < 1/5, profile is water

else, discard profile

With this method, about half of the Mixed multilayer profiles are recovered.

B Random Forests and decision trees

Decision trees can be fitted to data, but they have two large drawbacks: they are not as accurate as
other classification methods (due to the greedy binary space partitioning approach) and they tend to overfit
to the training data, meaning that completely different decision trees can be created from two slightly
different training datasets. A natural proposal to solve this problem is then to train many decision trees,
each on a slightly different version of the training set obtained by bootstrapping - a resampling method with
replacement. This is called bagging, from bootstrap aggregating. However, this is not enough to reduce the
variance of models with respect to the training data, as many trees will still be highly correlated, with the
strongest predictors always closer to the root of the tree. The Random Forest solves this problem by also
restricting the number of features accessible to each decision node in the training process. This way, the
trees become decorrelated, and the model is much less prone to overfitting.
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Figure 10: First four levels of a decision tree in the RF nighttime model. The split decision is shown at each node,
along with the distribution of datapoints in the node variable for each class.
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C Stepwise Feature Selector

Split data into training,
validation, and test sets

(grouped by day to reduce
spatial autocorrelation)
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Figure 11: A diagram explaining the Stepwise Feature Selection algorithm.

D Hyperparameter grid search

The models with the ten most relevant predictors have been trained with a range of different hyperpa-
rameters, as shown in figure 12.

Ndepth, with values from 10 to unlimited, number of trees in the forest Ntrees, with values from 50 to
500, and the number of minimum samples at a leaf node Nleaf.
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Figure 12: The validation (in colour) and training (by size) scores as a function of Ndepth and Nleaf. A variation
of Ntrees was done separately to reduce computation time, as the number of trees, above a certain amount, will not
improve or hurt the model performance significantly.
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