
AO17: Using wind direction data to determine
volcanic plume height

Author: Charles Tindal

Supervisors: Dr I. Taylor and Prof. R. Grainger

Abstract

Volcanic plume height is a key metric for forecasting the evolution and climate impact of a
volcanic eruption. This study presents a method for estimating plume height which combines
wind direction data with sulphur dioxide retrieval data from the Infrared Atmospheric Sounding
Interferometer (IASI). The efficacy of this method was evaluated by comparing it against an
established retrieval technique, focusing on eruptions of Mount Etna in Italy between 2016
and 2021. The method was found to be effective (88% agreement) for monotonic wind profiles
and tight angular plume distributions. In these cases, the technique provides a fast, reliable
estimate that can be applied to any instrument, and requires no additional eruption
information.

1 Introduction

Volcanic eruptions release large amounts
of ash and gas into the atmosphere. These
emissions pose multifaceted threats to
human activities and the environment.
Aviation is a primary concern as ash can
cause engine failure and other damage to
the aircraft. Silicates in the ash melt inside
the engine at temperatures above 1100 °C
causing loss of thrust or even flame
extinction in the combustion chamber [1].
The abrasive nature of ash can cause
enduring engine damage as well as
damage to the windscreen, reducing the
pilot’s visibility. It is therefore essential that
airlines have near real time information on
the location, altitude, and density of ash in
the atmosphere so they can plan their
routes accordingly and minimise the risk to
life as well as the financial impact [2]. It is
estimated that the 2010 Eyjafjallajökull
eruption had a $5 billion impact on global
GDP due to commercial airspace being
shut down over a large part of Northern
Europe [3]. Plume height is a key metric for
use in dispersion models that provide
airlines with accurate forecasts.

Beyond aviation, volcanic ash presents a
range of hazards, including damage to
infrastructure and machinery,
contaminating water supplies, and health
risks. This is particularly important for

volcanoes located near populous areas
such as Mt Etna, which has over one
million people living within 30 km.
Eruptions with large plume heights can
also have far-reaching climatic
consequences. Sulphur dioxide emitted
into the stratosphere can generate
sulphate aerosols which increase the
Earth's albedo and induce cooling effects
[4]. Additionally, substantial carbon dioxide
emissions contribute to the greenhouse
effect and thus to global warming.
Underwater volcanic eruptions, like the
2022 Hunga Tonga event, can inject large
amounts of water vapour into the
stratosphere, causing further warming [5].

Plume height is a crucial variable in
predicting the evolution and lifetime of ash
and gas from volcanic eruptions as well as
in predicting the impact of an eruption on
global climate. Currently plume height is
measured from ground, aircraft, or satellite-
based observations. A common issue with
ground or aircraft observations is that not
all eruptions occur at a time or location that
can be directly observed. Satellite
observations offer the advantage of global
coverage; however, many of the height
estimation techniques require additional
data such as eruption time or are
computationally intense. It is therefore
important to have an efficient,
straightforward method to obtain an early

estimate of plume height using a single
satellite image of the volcanic plume and
without knowledge of the eruption time.

This project aims to combine satellite
observations of sulphur dioxide (SO2)
plumes with wind direction data to estimate
the plume heights of eruptions at Mount
Etna from 2016 to 2021. Etna is used as it
was very active during this period, and the
observation data is widely available. SO2
can, with care, be used as a proxy for ash
[6]. In this case we are using SO2 because
the height data is easily available, however,
the method could equally be applied to ash.
The work investigates the conditions on
wind profile and plume distribution for
which the method is effective. The retrieval
techniques and wind profile method are
presented in section 2. In section 3 the
results are discussed, and a quality control
is introduced. The study’s conclusions are
detailed in section 4.

2 Method

2.1 Instrument

The Infrared Atmospheric Sounding
Interferometer (IASI) is a Fourier transform
spectrometer carried on the MetOp -A, -B,
and -C satellites, launched in 2006, 2012,
and 2018 respectively. The satellites are in
Sun-synchronous polar orbits meaning
they each offer near global coverage every
12 hours, crossing the equator at 9:30
mean local time. IASI is a nadir-viewing
instrument with a swath width of 2200 km
made up of 30 steps. Each step contains
four circular pixels of 12 km radius. IASI
has a high spectral resolution of 0.50 cm-1

(apodised) in the infrared band between
3.4-15.5 µm. This makes it well suited to
resolving the 𝜈!, 𝜈", and 𝜈! + 𝜈" absorption
features of SO2, which are centred at 8.7,
7.3, and 4.0 μm respectively. Imaging in the
infrared allows measurements to be made
through the night, and during high altitude
winters [7].

2.2 Linear Retrieval of SO2

This study uses a linear retrieval technique
from Walker et al. [8] to flag pixels in which

there are elevated amounts of SO2. The
method uses a covariance matrix formed
from SO2 free pixels (over the Northern
Atlantic and Europe in 2009) incorporating
channels in the 𝜈" absorption band. This
matrix holds information about the spectral
variability of SO2 free pixels due to other
parameters such as water vapour
concentration and the atmospheric
temperature profile. The spectra of pixels
containing SO2 are then easily
distinguished, and the column amount can
be calculated assuming a uniform
distribution of SO2 up to 20 km altitude. The
technique also makes the first order
assumption that the amount of SO2 is
directly proportional to the spectral
deviation from the background. Sensitivity
to low altitude SO2 is reduced if there are
high levels of water vapour (such as in the
tropics) due to its strong absorption in the
𝜈" band. This issue is mitigated when
looking at Etna due to its summit height of
3.3 km. The detection threshold for plumes
at 4-6 km is 1.3 Dobson Units (DU). This
threshold decreases with altitude to a value
of 0.33 DU at 11-14 km.

2.3 Iterative Retrieval of SO2

The iterative retrieval (IR) technique is
applied to pixels which have been flagged
by the linear retrieval method. This
technique uses the European Centre for
Medium-Range Weather Forecasts
(ECMWF) meteorological data for vertical
temperature, pressure, and water vapour
profiles. This data is then incorporated into
the RTTOV fast radiative transfer algorithm
to forward model top of atmosphere
radiances in the 𝜈! and 𝜈" bands. The
RTTOV model is run iteratively while
varying the state vector components
(column amount, height, thickness, and
surface temperature) with the aim of
minimising the cost function. The cost
function describes the fit between the
measured and modelled spectra. The
method outputs the column height (in DU)
and altitude (in hPa and converted to km)
of the SO2 plume assuming a Gaussian
distribution of thickness and a clear (cloud
free) sky.

The method produces an error covariance
matrix associated with the retrieval and a
quality control for each pixel. The quality
control requires that the retrieval has
converged, that the retrieved column
amount is positive, and that the retrieved
pressure is between 0 and 1100 hPa.
However, if the retrieval converges at a
local minimum, it may produce an
erroneous result that is not filtered by the
quality control. For the same reasons as
the linear retrieval, the IR technique has
larger errors at low altitudes and for low
concentrations of SO2. It may also
underestimate the column amount if there
is thick cloud or ash above the SO2 plume
[9,10].

2.4 Height Measurement by Wind

Profile Method

For a given IASI orbit over the region
surrounding Etna, the coordinates of
flagged pixels from the linear retrieval
within 500 km of Etna were plotted on a
map. An algorithm was used to calculate
the mean bearing of the flagged pixels with
respect to Etna. Any flagged pixels which
had a bearing within 10 ° of the mean were
identified as being part of the plume. The
number of pixels in the plume was counted,
and the standard deviation of angle was
taken.

Assuming the mean bearing to be the
direction of travel of the SO2 plume, the

corresponding plume height(s) were found
using the ECMWF ERA5 wind profile (wind
direction with height). The wind profile was
constructed by interpolating the u and v
vector components to Etna's location and
then computing the wind direction and
speed. The time of wind profile used was
the nearest hour to when the plume was
flagged by the IASI linear retrieval. This
choice was based on the first order
assumption that the wind direction is
constant throughout the plume’s
propagation from emission to
measurement. Examples of the height
measurement are shown graphically in
Figures 1 and 2.

In the case that the mean plume angle
intersected the wind profile more than once
(such as in Figure 2), the following ‘bin
method’ was used to find the best fitting
height:

1) Each flagged pixel’s bearing was

plotted against the wind profile and the
corresponding heights from the wind
profile were tabulated.

2) For each candidate plume height, the
pixel heights calculated in Step 1 that
fell within 1 km of this height were
counted.

3) The number of counts for each plume
height was then converted into a
probability.

4) The candidate height with the highest
probability was then selected as the
measured height of the SO2 plume.

Figure 1: Plume map and wind profile plot for single intersection case on 21st June 2021

Upper and lower bounds on the height
were also calculated by varying the
propagation angle within the standard
deviation and noting the maximum and
minimum heights at which there was an
intersection with the wind profile. The linear
retrieval takes just a few seconds per pixel
and the wind profile (WP) method takes
around 15 seconds to run, allowing plume
heights to be calculated in near real time.

This method was run for the ascending and
descending orbits for each day in which a
plume was detected (5 or more pixels in the
plume) using IASI data from MetOp-A
during a period from 2016-2021. The
resulting WP heights were then compared
with the IR heights. The 2021 results were
also compared against heights from the
Global Volcanism Program (GVP) bulletin
report. GVP bulletin reports for Etna are
compiled from weekly and special reports
by the Osservatorio Etneo, the regional
branch of Italy’s national volcano institute.
These reports contain plume height
measurements which use data from two
ground-based visible cameras as well as
the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) based on the Meteosat
Second Generation satellites to estimate
plume height with an uncertainty of 500 m
[11,12]. The report can lack detail and often
doesn’t specify whether the height
measurement has used remote sensing,
ground observation, or a combination of
both. Since heights obtained from ground-
based cameras are limited by viewing

angle to a maximum altitude of 9 km, some
of the heights given as 9 km are likely to be
underestimates [13].

3 Wind Method Results

3.1 Number of Intersections

Out of a total of 4200 (2100x2) orbits
between 1st Jan 2016 and 30th Sept 2021,
a plume was identified in 247 cases. A
height was found in 188 (76%) of these
orbits meaning there were 59 orbits for
which the plume angle did not intersect the
wind profile. The number of intersections in
each measurement is plotted in Figure 3
which shows that just 60/188 (32%) heights
were single intersection cases for which a
distinguishing method was not needed.

Figure 2: Plume map and wind profile plot for multiple intersection case on 4th March 2021

Figure 3: Bar graph showing the relative
frequencies of the number of intersections of
plume angle with wind profile for all height
measurements from 2016 to 2021

0
10
20
30
40
50
60
70

1 2 3 4 5+

Fr
eq

ue
nc

y

Number of Intersections

Intersection Distribution

3.2 Example Cases and
Limitations

The angle algorithm appeared to correctly
identify the direction of propagation in most
cases. Examples of this are Figures 1 and
2 which identify the SO2 plumes on 21st
June and 4th March to be positioned with
respect to Etna at bearings of 116±5° and
68±6° respectively. On 21st June there was
only a single intersection at 8.4±0.3 km.
However, on 4th March the plume angle
intersected the wind profile 7 times at
heights ranging from 4.8 km to 16.8 km.
The bin method was then used to select the
height as 6.9 km. The errors on this height
were large due to the shape of the wind

profile which gave a lower bound of 3.8 km
and an upper bound of 17.2 km.

There were, however, instances in which
the angle calculation was limited in its
accuracy. Figure 4 shows an example of a
plume angle for which the height could not
be found as there was no intersection with
the wind profile. It appears from the map
that there are two separate plumes in the
image. The algorithm has broken down as
it has found the angle of one of the plumes
which does not intersect with the wind
profile. The same issue occurs for other
plume shapes with a large spread of
angles. Figure 5 highlights two other events
for which the plume’s direction of travel is

Figure 4: Plume map and wind profile plot for a case in which there is no intersection on 12th Feb 2017

Figure 5: Plume maps in which direction is unclear. On the 20th August 2021 (left), there is a large plume which
extends across Etna to the NE and SW. On the 17th May 2016 (right) the plume appears to change direction.

unclear. Since the method has been tested
on a large dataset, results are automated
and therefore such cases have not been
eliminated from the study, however, they
could easily be identified by eye and
discounted if the method were to be used
for a particular eruption.

Another cause of error in the WP method is
the variation of wind profile with time and
location. As described in the methods
section, the wind profile used is at the
closest hour to when the pixels are imaged
by IASI, interpolated to Etna. The plume
may have been propagating for up to 12
hours from eruption by the time it is first
imaged by IASI. During this time, and over
this distance, the wind direction at the
altitude of the plume may have changed
somewhat. This can lead to there being no
intersections of the plume angle with the
wind profile, or to an erroneous height.

Since the method is independent of
eruption time, a control cannot be placed
on the maximum time since eruption,
however, the maximum distance of the
plume from Etna can be limited. In this
study this distance is 500 km, however, this
could be reduced going forward to improve
results. A summary of the limitations of the
WP technique are given in Table 1.

3.3 Comparison with Iterative

Retrieval Heights

Figure 6 shows the measured plume
heights plotted during an eruptive episode
beginning in February 2021. Dates such as
19th Feb and 22nd Feb display a good match
when comparing the WP height to the IR
height with the measured plumes differing
by 0.55 km and 0.10 km respectively,
agreeing well within errors. Both results

Table 1: A Summary of the WP method’s limitations, their effects, and how they have been mitigated.

Figure 6: Timeseries comparing WP heights with GVP and IR heights during Feb and March 2021

were cases in which the plume angle only
intersected the wind profile once. Other
dates such as 26th Feb and 17th March
show a significant difference between WP
and IR measured heights. On 28th Feb and
5th March the bin method appeared to
correctly select the heights from the
multiple intersection heights since the
nearest height to the IR height was chosen.
However, on 7th March the wrong height
intersection is selected with respect to the
IR.

Tables 2 and 3 show the agreement
between WP and IR heights for events
between 2016 and 2021. The threshold of
1.5 km is used as the measure of
agreement since it is roughly the typical
thickness of a volcanic plume. These
results show good agreement between
methods given the limitations that exist with
both techniques. The agreement is
improved by increasing the minimum
plume size and limiting the number of
intersections. These quality controls will be
discussed in Section 3.5.

3.4 Comparison with Global

Volcanism Report

GVP heights were compared with WP and
IR heights for 13 events during 2021. Nine
of these are plotted in Figure 6 during the
Feb-March eruptive episode. Table 4
shows that the agreement between GVP
heights and WP heights was significantly
better than with IR heights (54% within 1.5
km compared with 23%).

Table 2: Comparison of WP and IR heights
for all events between 2016 and 2021

Table 3: Comparison of WP and IR heights for
single intersection events between 2016 and 2021

Table 4: Comparison of GVP heights against WP and IR heights (for 13 events in 2021)

Figure 7: Comparing plume height distribution
of different methods (for plumes consisting of
at least 10 pixels)

To investigate the difference in the height
methods further, height distributions were
plotted for each method in Figure 7. This
shows that IR heights tended to be
significantly lower than both WP and GVP
heights with a mean plume height of 5.1 km
compared with 7.3 km and 7.8 km
respectively. A possible explanation for the
discrepancy between GVP and IR height
distribution is the small sample size of GVP
data. It also could be that the GVP bulletin
only reports on significant plumes, skewing
the mean plume height. However, the
apparent agreement of the GVP and WP
heights and distributions would suggest
that the IR may not be producing reliable
height measurements for SO2 emissions at
Etna as it seems to be underestimating the
plume height. This therefore effects the
overall validation of the WP method.
Comparison with other methods of height
measurement is therefore recommended
to further test the accuracy and reliability of
the WP technique.

3.5 Developing a Quality Control

Tables 2 and 3 demonstrate that increasing
the minimum plume size and limiting the
number of intersections leads to an
improved agreement between methods
and reduces the number of erroneous
results. In this section we develop a quality
control that can be used to determine the
plume shapes and wind profiles for which
the WP technique is applicable.

3.5.1 Minimum Plume Size

To include as many events as possible, the
minimum pixel number in the plume was
initially set to 5. Table 2 shows that
increasing the minimum plume size from 5
pixels to 30 pixels increases the likelihood
of the WP height agreeing with the IR
height from 55% to 88%. This trend is even
clearer in the single intersection case (see
Table 3) which rises from 63% agreement
to 100% (8/8) agreement. Furthermore,
plotting the Pearson correlation coefficient
between WP and IR heights against
minimum plume size (Figure 8) shows a
similar positive trend with a large jump in
correlation around at 20 pixels. Therefore,
the recommendation of the minimum plume

size for which the method should be
applied is 20 pixels.

These results show clearly that minimum
plume size is an important metric for
determining the accuracy of the WP
method. This could be due to many factors.
Increasing the minimum pixel threshold
reduces the likelihood of the plume being
falsely detected due to anomalous surface
temperatures or gas concentrations.
Having more pixels also improves the
accuracy of the plume angle algorithm as
there are more location coordinates
available. It is possible that the IR height
estimates also improve with the number of
pixels since a larger plume may mean
higher concentrations of SO2. In addition,
there would be more pixels from which to
take the average, hence reducing the
sampling error.

3.5.2 Wind Profile Control

A limitation on the WP technique is that in
many cases (such as Figure 2), the
difference between upper and lower
bounds is so great the result is not useful.
In these cases, the plume angle often
intersects the wind profile multiple times at
different heights. Often these heights
cannot be reliably distinguished by the bin
method without additional information.
Therefore, for the WP technique to be
accurate, certain conditions on the plume
and wind profile are required. Limiting the
wind profile to only cases in which there is

Figure 8: Plot showing how correlation
between WP and IR heights improves as
minimum plume size increases

a single intersection greatly improves the
accuracy of the height measurements,
however, single intersection wind profiles
only occur around 32% of the time and
hence cannot be relied upon.

An alternative indicator of a good wind
profile and small angular plume spread is
the difference between lower and upper
bounds on the WP height. A small
difference in bounds suggests a
monotonic, shallow gradient wind profile
and a tight angular plume distribution such
as that of Figure 1. It was found that when
minimum plume size was set to 10 pixels
and the upper and lower bounds differ by 2
km or less, the WP method agreed with IR
heights in 70% of cases, compared with
60% when removing the limits on bounds.
This agreement increases further when
limiting plume size and eliminating irregular
plume shapes by eye.

4 Conclusions

This work has developed a method to
estimate volcanic plume height using wind
direction and IASI linear retrieval data. The
method was tested against the Carboni et
al. (2012,2016) iterative retrieval technique
for eruptions of Etna between 2016 and
2021.

The WP method’s simplicity and speed of
algorithm make it well suited to measuring
plume height from volcanoes across the
globe in near real time. However, the study
found that the technique produces a good
estimate of SO2 plume height only when
specific conditions on the plume and the
wind profile are met. Firstly, it requires that
the plume is significant (at least 20 pixels)
and has a tight angular spread (within 10°).
Secondly, the wind direction must vary
sufficiently with height such that the bounds
on the plume height are close (within 2 km).
Finally, the method requires that the wind
direction does not change significantly over
the time during which the plume has
propagated. When these conditions were
met, the study found that the WP heights of
SO2 plumes from Etna between 2016 and
2021 showed a good correlation with IR
heights and agreed within errors in 68% of
cases. This result was improved to 83%

when removing the cases in which there
were multiple intersections with the wind
profile.

To be able to distinguish heights effectively
in the case with many intersections, more
information on the plume and/or wind
profile would be required. A possible future
amendment would be to utilise successive
IASI images of the same plume from
multiple MetOp satellites to infer the speed
of the plume. Alternatively, the plume
speed could be calculated using the
eruption time. Comparing this speed to the
wind profile (speed plotted against altitude)
could then allow the true plume height to be
distinguished. However, using successive
images of the plume or an eruption time
would infringe on a primary aim of the
method which was to work with only a
single image and no additional eruption
information.

To improve the method, the plume angle
algorithm could be developed to take the
column amount of each pixel into account
as well as the distance from the point of
emission. The bearing could then be
weighted to favour pixels which are closer
to the eruption site and have larger
amounts of SO2. Further work could also be
done to qualitatively assess which plume
shapes and plume distributions the method
will produce erroneous results for. The
study should be extended to more
volcanoes to verify that it is effective at
measuring plume height for different types
of eruptions in other locations. In addition,
since the technique is very general, it could
be extended to other instruments and to
ash, allowing it to be tested in a variety of
scenarios. Finally, it would be beneficial to
test the WP method against other plume
height measurement methods to improve
the reliability of the results.

References

[1] Song, W., Lavallée, Y., Hess, KU. et

al. (2016). Volcanic ash melting under
conditions relevant to ash turbine
interactions. Nat Commun 7, 10795.

[2] Lechner et al. (2017) Volcanic Ash and
Aviation – The Challenges of Real-Time,
Global Communication of a Natural
Hazard, pp. 1–14, Advances in
Volcanology, Springer, Berlin, Heidelberg

[3] Oxford Economics (2010), The Economic
Impacts of Air Travel Restrictions Due to
Volcanic Ash,
https://controverses.minesparis.psl.eu/pub
lic/promo10/promo10_G11/data/document
s/Volcanic-Update.pdf

[4] Rollins, A. W. et al. (2017). The role of
sulfur dioxide in stratospheric aerosol
formation evaluated by using in situ
measurements in the tropical lower
stratosphere. Geophys. Res.
Lett., 44, 4280–4286

[5] Jenkins, S., Smith, C., Allen, M. et al.
(2023). Tonga eruption increases chance
of temporary surface temperature
anomaly above 1.5 °C. Nat. Clim.
Chang. 13, 127–129

[6] Thomas, H. E. and Prata, A. J. (2011)
Sulphur dioxide as a volcanic ash proxy
during the April–May 2010 eruption of
Eyjafjallajökull Volcano, Iceland. Atmos.
Chem. Phys., 11, 6871–6880

[7] Taylor, I et al. (2023). A satellite
chronology of plumes from the April 2021
eruption of La Soufrière, St Vincent.
Atmos. Chem. Phys., 23, 15209–15234

[8] Walker et al. (2012). Improved detection
of sulphur dioxide in volcanic plumes
using satellite-based hyperspectral
infrared measurements: Application to the
Eyjafjallajökull 2010 eruption, J. Geophys.
Res., 117, D00U16

[9] Carboni et al. (2012) A new scheme for
sulphur dioxide retrieval from IASI
measurements: application to the
Eyjafjallajökull eruption of April and May
2010, ACP., 12, 11417–11434

[10] Carboni et al. (2016) The vertical
distribution of volcanic SO2 plumes
measured by IASI, Atmos. Chem. Phys.,
16, 4343–4367

[11] De Angelis, S., Zuccarello, L.,
Scollo, S. et al. (2023) Assessment of
eruption source parameters using
infrasound and plume modelling: a case
study from the 2021 eruption of Mt. Etna,
Italy. Sci Rep 13, 19857

[12] Scollo et al. (2019). Near-Real-
Time Tephra Fallout Assessment at Mt.
Etna, Italy. Remote Sens. 11, 2987

[13] Scollo et al. (2014). Eruption
Column Height Estimation: the 2011-2013
Etna lava fountains. Annali di geofisica. 57

Appendix A: Source Code

import scipy.io as sio

import scipy.stats as sst

import numpy as np

import matplotlib.pyplot as plt

import cartopy.crs as ccrs

import glob

from datetime import datetime

import pytz

def

time_since_2000(year,month,day,hour,min,region):

Input using local time

 epoch_time = datetime(2000, 1, 1)

 if region=='etna':

 if int(month) in [1, 2, 3, 11, 12]: # CET

time

 offset = 1

 if int(month) in [4, 5, 6, 7, 8, 9, 10]:

CEST time

 offset = 2

 else:

 print('Not Etna')

 offset = 0

 event_time = datetime(int(year), int(month),

int(day), hour + offset, min)

 dt = event_time - epoch_time

 time_2000 = dt.total_seconds()

 return time_2000 # Output is total seconds

from 2000 UTC to event

This function imports the wind profile

def wind_profile(year,month,day,hour,region):

 profile =

glob.glob("/network/group/aopp/eodg/RGG008_GRAINGER

_IASIVOLC/taylor/ecmwf_profs/{}/{}/{}/ECprofs_{}{}{

}_{}.sav".format(region, year, month, year, month,

day, hour))

 p = sio.readsav(profile[0])

 height = p.wind_profs.z[0] # Height in km

 wd = p.wind_profs.wd[0] # Wind direction (deg)

 ws = p.wind_profs.ws[0] # Wind speed in m/s

 return height,wd,ws

This function reads in Linear retrieval data for

a given IASI orbit

def read_in_so2(year,month,day,ascend,flag):

 files = glob.glob(

"/gf4/eodg/RGG008_GRAINGER_IASIVOLC/taylor/iasi/so2

_out/standard-globe_v3-1/lin/{}/{}/standard-

globe_v3-1_lr_iasi-a_{}{}{}_????.sav".format(

 year, month, year, month, day))

 # Select ascending or descending

 if ascend == 1:

 marker = 'A'

 else:

 marker = 'D'

 long = np.zeros(0)

 lati = np.zeros(0)

 pixel_time = np.zeros(0)

 # Read in all files for specific day

 for i in range(len(files)):

 file = files[i]

 s = sio.readsav(file)

 latitude = s.lr_so2.lats[0]

 longitude = s.lr_so2.lons[0]

 index = s.lr_so2.v3_idx[0]

 direction = s.lr_so2.direction[0]

 pix_time = s.lr_so2.time[0]

 if np.isscalar(index) and flag == 1:

Highlights instance in which no pixels are

flagged

 continue

 lon = np.zeros(0)

 lat = np.zeros(0)

 pix_t = np.zeros(0)

 if flag == 1: # choosing only flagged

pixels

 longitude = longitude[index]

 latitude = latitude[index]

 direction = direction[index]

 pix_time = pix_time[index]

 for j in range(len(direction)): # For a

given file, compiles data for ascending/descending

 if marker in str(direction[j]):

 lon = np.append(lon, longitude[j])

 lat = np.append(lat, latitude[j])

 pix_t = np.append(pix_t,

pix_time[j])

 # Compiles all data on a given day

 long = np.append(long, lon)

 lati = np.append(lati, lat)

 pixel_time = np.append(pixel_time, pix_t)

 return lati, long, pixel_time, len(files)

This function returns distance and bearing

between eruption and flagged pixel

def

dist_ang(lat0,lon0,lat1,lon1,dist_flag,angle_flag):

 phi1 = lat1 * np.pi / 180

 lamda1 = lon1 * np.pi / 180

 phi0 = lat0 * np.pi / 180

 lamda0 = lon0 * np.pi / 180

 d_phi = phi1 - phi0

 d_lamda = lamda1 - lamda0

 d = 0

 if dist_flag==1:

 a = (np.sin(d_phi / 2)) ** 2 + np.cos(phi1)

* np.cos(phi0) * (np.sin((d_lamda) / 2)) ** 2

 c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-

a))

 d = c * 6371e3 # Distance calculator

 theta = 0

 if angle_flag ==1:

 theta = (450 - np.arctan(d_phi / d_lamda) *

(180 / np.pi)) % 360

Calculates angle of plume pixels from eruption

 if d_lamda < 0:

 theta = theta + 180

 return d, theta

This function finds the angle, time since

emission, distance from source and coordinates of

pixels in the plume

def

plume(lati,long,pixel_time,lat0,lon0,t_erupt_s,dmax

,use_speed):

 bearing = np.zeros(0)

 dist = np.zeros(0)

 lon_plume = np.zeros(0)

 lat_plume = np.zeros(0)

 pix_time = np.zeros(0)

 speed_plume = np.zeros(0)

 for i in range(len(long)):

 d, _ =

dist_ang(lat0,lon0,lati[i],long[i],1,0)

 if d <= dmax: # Selects only 'close'

pixels in plume

 _, theta =

dist_ang(lat0,lon0,lati[i],long[i],0,1)

 if use_speed==1:

 elapsed_time = pixel_time[i] -

t_erupt_s

 pix_speed = d / elapsed_time

 speed_plume =

np.append(speed_plume, pix_speed)

 pix_time = np.append(pix_time,

pixel_time[i])

 bearing = np.append(bearing, theta)

 dist = np.append(dist, d)

 lon_plume = np.append(lon_plume,

long[i])

 lat_plume = np.append(lat_plume,

lati[i])

 return bearing, dist, lon_plume, lat_plume,

speed_plume, pix_time

This function finds the mean plume angle and

standard deviation

def angles(bearing,lat_plume,lon_plume):

 # Determine an average angle

 devs = np.zeros(0)

 lats = np.zeros(0)

 lons = np.zeros(0)

 med = np.median(bearing)

 for j in range(len(bearing)):

 alpha = (bearing[j] - med + 360) % 360

 if alpha > 180:

 alpha = alpha - 360

 if -10 < alpha < 10:

 devs = np.append(devs, alpha)

 lats = np.append(lats,lat_plume[j])

Finds pixels of plume (to be compared with ir

height)

 lons = np.append(lons,lon_plume[j])

 pl_angles = (devs + med + 360) % 360

 st_dev = np.std(devs)

 mean = (np.mean(devs) + med + 360) % 360

 return pl_angles, st_dev, mean, lats, lons

This function returns all intersection heights of

plume angle with wind profile

def int_(angle, height, wd, alt, hmax):

 intersection = np.zeros(0)

 for i in range(len(wd) - 1):

 if wd[i] < angle < wd[i + 1] and alt <

height[i] < hmax:

 int = height[i] + (angle - wd[i]) *

(height[i + 1] - height[i]) / (wd[i + 1] - wd[i])

 if int>hmax:

 int=hmax

 elif int<alt:

 int=alt

 intersection = np.append(intersection,

int)

 if wd[i + 1] < angle < wd[i] and alt <

height[i] < hmax:

 int = height[i] + (angle - wd[i]) *

(height[i + 1] - height[i]) / (wd[i + 1] - wd[i])

 if int>hmax:

 int=hmax

 elif int<alt:

 int=alt

 intersection = np.append(intersection,

int)

 return intersection

This function imports location and altitude of

given volcano

def region_(region):

 if region == 'etna':

 lat0 = 37.748

 lon0 = 14.999

 xscale = 12

 yscale = 8

 lon_min = lon0 - xscale

 lon_max = lon0 + xscale

 lat_min = lat0 - yscale

 lat_max = lat0 + yscale

 alt = 3.3 # km

 else:

 print('NOT ETNA -> NO DATA')

 return lat0, lon0, lon_min, lon_max, lat_min,

lat_max, alt

This function reads in Iterative Retrieval data

for a given IASI orbit

def ir_heights(year,month,day):

 files =

glob.glob("/gf4/eodg/RGG008_GRAINGER_IASIVOLC/taylo

r/iasi/so2_out/standard-globe_v3-

1/ir/{}/{}/standard-globe_v3-1_ir_iasi-

a_{}{}{}_????.sav".format(year, month, year, month,

day))

 lons = np.zeros(0)

 lats = np.zeros(0)

 kms = np.zeros(0)

 kms_error = np.zeros(0)

 qcs = np.zeros(0)

 for i in range(len(files)):

 file = files[i]

 s = sio.readsav(file)

 qc = s.ir_so2.QC10

 lon = s.ir_so2.lon

 lat = s.ir_so2.lat

 km = s.ir_so2.km

 km_error = s.ir_so2.km_error

 for j in range(len(km_error)):

 if km_error[j]>km[j]:

 km_error[j] = km[j]

 qcs = np.append(qcs,qc)

 lons = np.append(lons, lon)

 lats = np.append(lats, lat)

 kms = np.append(kms, km)

 kms_error = np.append(kms_error, km_error)

 return lats, lons, kms, kms_error, qcs,

len(files)

This function finds the plume height as measured

by IR

def

ir_plume_height(ir_lats,ir_lons,lat_plume_x,lon_plu

me_x,ir_kms,ir_kms_err, qcs):

 count_qc_0 = 0

 ir_height = np.zeros(0)

 ir_height_err = np.zeros(0)

 for j in range(len(lat_plume_x)):

 for i in range(len(ir_lats)):

 if lat_plume_x[j] == ir_lats[i] and

lon_plume_x[j] == ir_lons[i]:

 print(qcs[i])

 if qcs[i]==1:

 ir_height =

np.append(ir_height, ir_kms[i])

 ir_height_err =

np.append(ir_height_err, ir_kms_err[i])

 elif qcs[i]==0:

 count_qc_0 = count_qc_0+1

 break

 points_in_IR_plume = len(ir_height)

 nans_in_IR_plume =

np.count_nonzero(np.isnan(ir_height))

 mean = np.nanmean(ir_height)

 std = np.nanstd(ir_height)

 index = np.zeros(len(ir_height),dtype=bool)

 for i in range(len(ir_height)):

 if mean-(3*std)<ir_height[i]<mean+(3*std)

and isinstance(ir_height[i],float):

 index[i] = 1

 ir_height_mean = np.mean(ir_height[index])

 ir_height_err1 = np.std(ir_height[index])

 ir_height_err2 = np.mean(ir_height_err[index])

 ir_height_errx =

np.max([ir_height_err1,ir_height_err2])

 return ir_height_mean, ir_height_err1,

ir_height_err2, ir_height_errx, points_in_IR_plume,

nans_in_IR_plume, count_qc_0

This function finds upper and lower limits on the

plume height

def height_limits(mean, st_dev, height, wd, alt,

hmax):

 spread = np.linspace(mean - st_dev, mean +

st_dev, 15) # Finds heights where standard spread

of angles intersect

 spread_ints = np.zeros(0)

 for i in range(len(spread)): # Calculates

lower and upper limits on height

 ints = int_(spread[i], height, wd, alt,

hmax)

 spread_ints = np.append(spread_ints, ints)

 if len(spread_ints) <2:

 h_upper,h_lower = 0,0

 else:

 h_upper = np.max(spread_ints)

 h_lower = np.min(spread_ints)

 return h_lower, h_upper

This function outputs the probability of each

intersection height using the bin method

def bin_distinguish(mean_int, pl_angles, height,

wd, alt, hmax, half_bin):

 intersect = np.zeros(0)

 for j in range(len(pl_angles)):

 for i in range(len(wd) - 1):

 if wd[i] < pl_angles[j] < wd[i + 1] and

alt < height[i] < hmax:

 int = height[i] + (pl_angles[j] -

wd[i]) * (height[i + 1] - height[i]) / (wd[i + 1] -

wd[i])

 intersect = np.append(intersect,

int)

 if wd[i + 1] < pl_angles[j] < wd[i] and

alt < height[i] < hmax:

 int = height[i] + (pl_angles[j] -

wd[i]) * (height[i + 1] - height[i]) / (wd[i + 1] -

wd[i])

 intersect = np.append(intersect,

int)

 count = np.zeros([1, len(mean_int)])

 for i in range(len(mean_int)):

 for j in range(len(intersect)):

 if -half_bin < intersect[j] -

mean_int[i] < half_bin:

 count[0, i] = count[0, i] + 1

 prob = count / np.sum(count)

 return prob

This function converts u and v vectors into a

bearing

def wind_direction(u,v):

 wd = np.zeros(len(u))

 for i in range(len(u)):

 wd[i] = (450 - np.arctan(v[i] / u[i]) *

(180 / np.pi)) % 360 # calculates angle of plume

pixels from eruption

 if u[i] < 0:

 wd[i] = wd[i] + 180

 return wd

Input specific orbit here

year = "2021"

month = "03"

day = "01"

ascend = 1

Parameters set here

dmax = 5e5

hmax = 18

half_bin = 1

region = 'etna'

lat0, lon0, lon_min, lon_max, lat_min, lat_max, alt

= region_(region) # Reads in volcano details

Resets all data

plume_found, focused_plume_size,

points_in_IR_plume, nans_in_IR_plume, hour,

IR_files, mean, st_dev, mean_int, h_lower, h_upper,

prob, ir_height_mean, ir_height_err1,

ir_height_err2, ir_height_errx, count_qcs_0 =

False,0,0,0,'',0,0,0,0,0,0,0,0,0,0,0,0

lati, long, pixel_time, LR_files =

read_in_so2(year, month, day, ascend, 1)

bearing, dist, lon_plume, lat_plume, speed_plume,

pix_time = plume(lati, long, pixel_time, lat0,

lon0,0, dmax,0)

points_within_dmax = len(bearing)

if points_within_dmax > 5: # Checks enough pixels

 # Create map for plot

 fig = plt.figure(figsize=(11, 8.5))

 ax =

plt.axes(projection=ccrs.PlateCarree(central_longit

ude=0))

 ax.set_extent([lon_min, lon_max, lat_min,

lat_max], crs=ccrs.PlateCarree())

 ax.coastlines()

 gl = ax.gridlines(draw_labels=True)

 gl.alpha = 0.5

 gl.xlocator = plt.MaxNLocator(6)

 gl.ylocator = plt.MaxNLocator(6)

plt.scatter(lon0,lat0,marker='^',s=50,c='black')

 # Labels plots with date + asc/des + region

 if ascend == 1:

 plt.title('Volcanic Plume (Ascending orbit)

on ' + day + '/' + month + '/' + year)

 mark = 'Asc'

 else:

 plt.title('Volcanic Plume (Descending

orbit) on ' + day + '/' + month + '/' + year)

 mark = 'Des'

 pl_angles, st_dev, mean, lat_plume_x,

lon_plume_x = angles(bearing, lat_plume, lon_plume)

Creates focused plume

 focused_plume_size = len(pl_angles)

 if focused_plume_size > 5: # Check focused

plume is large enough

 plume_found = True

 # Draws line for average bearing and

standard deviation, plots on map

 x1 = np.linspace(lon0, lon0 + np.sin(mean *

np.pi / 180) * dmax / 111e3)

 x2 = np.linspace(lon0, lon0 + np.sin((mean

- st_dev) * np.pi / 180) * dmax / 111e3)

 x3 = np.linspace(lon0, lon0 + np.sin((mean

+ st_dev) * np.pi / 180) * dmax / 111e3)

 y1 = lat0 + np.tan(np.pi / 2 - mean * np.pi

/ 180) * (x1 - lon0)

 y2 = lat0 + np.tan(np.pi / 2 - (mean -

st_dev) * np.pi / 180) * (x2 - lon0)

 y3 = lat0 + np.tan(np.pi / 2 - (mean +

st_dev) * np.pi / 180) * (x3 - lon0)

 plt.scatter(lon_plume, lat_plume, s=1,

label = 'Flagged pixel')

 plt.plot(x1, y1, color='red',

transform=ccrs.PlateCarree(), label='Mean Bearing')

 plt.plot(x2, y2, color='orange',

transform=ccrs.PlateCarree(), label = 'Standard

Deviation')

 plt.plot(x3, y3, color='orange',

transform=ccrs.PlateCarree())

 fname1 = year + '_' + month + '_' + day +

'_' + mark + '_map.png'

 plt.legend()

 plt.savefig(fname1)

 # Find hour for wind profile

 med_pixel_time = np.median(pix_time)

 start_of_day =

time_since_2000(year,month,day,00,00,region)

 hour = f'{int(np.round((med_pixel_time-

start_of_day)/3600)):02d}'

 height, wd, ws = wind_profile(year, month,

day, hour, region) # Reads in wind profile

 mean_int = int_(mean, height, wd, alt,

hmax) # Finds heights where mean angle intersects

 if len(mean_int) > 0:

 h_lower, h_upper = height_limits(mean,

st_dev, height, wd, alt, hmax) # Finds height

limits

 prob = bin_distinguish(mean_int,

pl_angles, height, wd, alt, hmax, half_bin)

 height_distinguished =

mean_int[np.argmax(prob[0])]

 ir_lats, ir_lons, ir_kms, ir_kms_err, qcs,

IR_files = ir_heights(year, month, day)

 ir_height_mean, ir_height_err1,

ir_height_err2, ir_height_errx, points_in_IR_plume,

nans_in_IR_plume, count_qcs_0 =

ir_plume_height(ir_lats, ir_lons, lat_plume_x,

lon_plume_x, ir_kms, ir_kms_err, qcs)

 plt.figure() # Plots angle distribution

histogram

 plt.hist(bearing)

 plt.axvline(mean + st_dev,

color='orange',label='Standard deviation')

 plt.axvline(mean - st_dev, color='orange')

 plt.axvline(mean, color='red',label='Mean')

 plt.title('Distribution of plume angle on '

+ day + '/' + month + '/' + year + ' at ' + hour +

'00')

 plt.xlabel('Bearing in degrees')

 plt.ylabel('Frequency density')

 plt.legend()

 fname2 = year + '_' + month + '_' + day +

'_' + mark + '_angles.png'

 plt.savefig(fname2)

 plt.figure() # Plots wind profile and

intersection

 plt.title('Wind Profile of Etna on ' + day

+ '/' + month + '/' + year + ' at ' + hour + '00')

 plt.ylim([alt, hmax])

 plt.xlabel('Wind direction in degrees')

 plt.ylabel('Height (km)')

 plt.scatter(wd, height,label='ECMWF

Profile')

 plt.axvline(mean, color='red',label='Mean

bearing')

 plt.axvline(mean - st_dev, color='orange')

 plt.axvline(mean + st_dev, color='orange')

plt.hlines([h_upper,h_lower],color='orange',xmin =

0, xmax = mean, label='Lower and Upper bounds')

 if len(mean_int) > 0:

 plt.hlines(mean_int, xmin=0, xmax=mean,

color='green',label='Height intersection')

 plt.legend()

 fname3 = year + '_' + month + '_' + day +

'_'+hour+'00'+'_' + mark + '_profile.png'

 plt.savefig(fname3)

print(plume_found, year, month, day, ascend,

points_within_dmax, focused_plume_size,

points_in_IR_plume, nans_in_IR_plume, hour,

LR_files, IR_files, mean, st_dev, mean_int,

h_lower, h_upper,

prob,ir_height_mean,ir_height_err1,ir_height_err2,

ir_height_errx,count_qcs_0)

data = [plume_found, year, month, day, ascend,

points_within_dmax, focused_plume_size,

points_in_IR_plume, nans_in_IR_plume, hour,

LR_files, IR_files, mean, st_dev, mean_int,

h_lower, h_upper,

prob,ir_height_mean,ir_height_err1,ir_height_err2,

ir_height_errx,count_qcs_0]

plt.show()

