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Abstract 
 
Volcanic plume height is a key metric for forecasting the evolution and climate impact of a 
volcanic eruption. This study presents a method for estimating plume height which combines 
wind direction data with sulphur dioxide retrieval data from the Infrared Atmospheric Sounding 
Interferometer (IASI). The efficacy of this method was evaluated by comparing it against an 
established retrieval technique, focusing on eruptions of Mount Etna in Italy between 2016 
and 2021. The method was found to be effective (88% agreement) for monotonic wind profiles 
and tight angular plume distributions. In these cases, the technique provides a fast, reliable 
estimate that can be applied to any instrument, and requires no additional eruption 
information. 
 
1 Introduction 
 
Volcanic eruptions release large amounts 
of ash and gas into the atmosphere. These 
emissions pose multifaceted threats to 
human activities and the environment. 
Aviation is a primary concern as ash can 
cause engine failure and other damage to 
the aircraft. Silicates in the ash melt inside 
the engine at temperatures above 1100 °C 
causing loss of thrust or even flame 
extinction in the combustion chamber [1]. 
The abrasive nature of ash can cause 
enduring engine damage as well as 
damage to the windscreen, reducing the 
pilot’s visibility. It is therefore essential that 
airlines have near real time information on 
the location, altitude, and density of ash in 
the atmosphere so they can plan their 
routes accordingly and minimise the risk to 
life as well as the financial impact [2]. It is 
estimated that the 2010 Eyjafjallajökull 
eruption had a $5 billion impact on global 
GDP due to commercial airspace being 
shut down over a large part of Northern 
Europe [3]. Plume height is a key metric for 
use in dispersion models that provide 
airlines with accurate forecasts. 
 
Beyond aviation, volcanic ash presents a 
range of hazards, including damage to 
infrastructure and machinery, 
contaminating water supplies, and health 
risks. This is particularly important for 

volcanoes located near populous areas 
such as Mt Etna, which has over one 
million people living within 30 km. 
Eruptions with large plume heights can 
also have far-reaching climatic 
consequences. Sulphur dioxide emitted 
into the stratosphere can generate 
sulphate aerosols which increase the 
Earth's albedo and induce cooling effects 
[4]. Additionally, substantial carbon dioxide 
emissions contribute to the greenhouse 
effect and thus to global warming. 
Underwater volcanic eruptions, like the 
2022 Hunga Tonga event, can inject large 
amounts of water vapour into the 
stratosphere, causing further warming [5]. 
 
Plume height is a crucial variable in 
predicting the evolution and lifetime of ash 
and gas from volcanic eruptions as well as 
in predicting the impact of an eruption on 
global climate. Currently plume height is 
measured from ground, aircraft, or satellite-
based observations. A common issue with 
ground or aircraft observations is that not 
all eruptions occur at a time or location that 
can be directly observed. Satellite 
observations offer the advantage of global 
coverage; however, many of the height 
estimation techniques require additional 
data such as eruption time or are 
computationally intense. It is therefore 
important to have an efficient, 
straightforward method to obtain an early 



estimate of plume height using a single 
satellite image of the volcanic plume and 
without knowledge of the eruption time.  
 
This project aims to combine satellite 
observations of sulphur dioxide (SO2) 
plumes with wind direction data to estimate 
the plume heights of eruptions at Mount 
Etna from 2016 to 2021. Etna is used as it 
was very active during this period, and the 
observation data is widely available. SO2 
can, with care, be used as a proxy for ash 
[6]. In this case we are using SO2 because 
the height data is easily available, however, 
the method could equally be applied to ash. 
The work investigates the conditions on 
wind profile and plume distribution for 
which the method is effective. The retrieval 
techniques and wind profile method are 
presented in section 2. In section 3 the 
results are discussed, and a quality control 
is introduced. The study’s conclusions are 
detailed in section 4. 
 
2 Method 
 
2.1     Instrument  

The Infrared Atmospheric Sounding 
Interferometer (IASI) is a Fourier transform 
spectrometer carried on the MetOp -A, -B, 
and -C satellites, launched in 2006, 2012, 
and 2018 respectively. The satellites are in 
Sun-synchronous polar orbits meaning 
they each offer near global coverage every 
12 hours, crossing the equator at 9:30 
mean local time. IASI is a nadir-viewing 
instrument with a swath width of 2200 km 
made up of 30 steps. Each step contains 
four circular pixels of 12 km radius. IASI 
has a high spectral resolution of 0.50 cm-1 

(apodised) in the infrared band between 
3.4-15.5 µm. This makes it well suited to 
resolving the 𝜈!, 𝜈", and 𝜈! + 𝜈" absorption 
features of SO2, which are centred at 8.7, 
7.3, and 4.0 μm respectively. Imaging in the 
infrared allows measurements to be made 
through the night, and during high altitude 
winters [7]. 

2.2     Linear Retrieval of SO2  

This study uses a linear retrieval technique 
from Walker et al. [8] to flag pixels in which 

there are elevated amounts of SO2. The 
method uses a covariance matrix formed 
from SO2 free pixels (over the Northern 
Atlantic and Europe in 2009) incorporating 
channels in the 𝜈" absorption band. This 
matrix holds information about the spectral 
variability of SO2 free pixels due to other 
parameters such as water vapour 
concentration and the atmospheric 
temperature profile. The spectra of pixels 
containing SO2 are then easily 
distinguished, and the column amount can 
be calculated assuming a uniform 
distribution of SO2 up to 20 km altitude. The 
technique also makes the first order 
assumption that the amount of SO2 is 
directly proportional to the spectral 
deviation from the background. Sensitivity 
to low altitude SO2 is reduced if there are 
high levels of water vapour (such as in the 
tropics) due to its strong absorption in the 
𝜈" band. This issue is mitigated when 
looking at Etna due to its summit height of 
3.3 km. The detection threshold for plumes 
at 4-6 km is 1.3 Dobson Units (DU). This 
threshold decreases with altitude to a value 
of 0.33 DU at 11-14 km. 

2.3 Iterative Retrieval of SO2 

The iterative retrieval (IR) technique is 
applied to pixels which have been flagged 
by the linear retrieval method. This 
technique uses the European Centre for 
Medium-Range Weather Forecasts 
(ECMWF) meteorological data for vertical 
temperature, pressure, and water vapour 
profiles. This data is then incorporated into 
the RTTOV fast radiative transfer algorithm 
to forward model top of atmosphere 
radiances in the 𝜈! and 𝜈" bands. The 
RTTOV model is run iteratively while 
varying the state vector components 
(column amount, height, thickness, and 
surface temperature) with the aim of 
minimising the cost function. The cost 
function describes the fit between the 
measured and modelled spectra. The 
method outputs the column height (in DU) 
and altitude (in hPa and converted to km) 
of the SO2 plume assuming a Gaussian 
distribution of thickness and a clear (cloud 
free) sky.  



The method produces an error covariance 
matrix associated with the retrieval and a 
quality control for each pixel. The quality 
control requires that the retrieval has 
converged, that the retrieved column 
amount is positive, and that the retrieved 
pressure is between 0 and 1100 hPa. 
However, if the retrieval converges at a 
local minimum, it may produce an 
erroneous result that is not filtered by the 
quality control. For the same reasons as 
the linear retrieval, the IR technique has 
larger errors at low altitudes and for low 
concentrations of SO2. It may also 
underestimate the column amount if there 
is thick cloud or ash above the SO2 plume 
[9,10]. 
 
2.4  Height Measurement by Wind 

Profile Method  
 
For a given IASI orbit over the region 
surrounding Etna, the coordinates of 
flagged pixels from the linear retrieval 
within 500 km of Etna were plotted on a 
map. An algorithm was used to calculate 
the mean bearing of the flagged pixels with 
respect to Etna. Any flagged pixels which 
had a bearing within 10 ° of the mean were 
identified as being part of the plume. The 
number of pixels in the plume was counted, 
and the standard deviation of angle was 
taken. 
 
Assuming the mean bearing to be the 
direction of travel of the SO2 plume, the 

corresponding plume height(s) were found 
using the ECMWF ERA5 wind profile (wind 
direction with height). The wind profile was 
constructed by interpolating the u and v 
vector components to Etna's location and 
then computing the wind direction and 
speed. The time of wind profile used was 
the nearest hour to when the plume was 
flagged by the IASI linear retrieval. This 
choice was based on the first order 
assumption that the wind direction is 
constant throughout the plume’s 
propagation from emission to 
measurement. Examples of the height 
measurement are shown graphically in 
Figures 1 and 2.  
 
In the case that the mean plume angle 
intersected the wind profile more than once 
(such as in Figure 2), the following ‘bin 
method’ was used to find the best fitting 
height:  
 
1) Each flagged pixel’s bearing was 

plotted against the wind profile and the 
corresponding heights from the wind 
profile were tabulated.  

2) For each candidate plume height, the 
pixel heights calculated in Step 1 that 
fell within 1 km of this height were 
counted. 

3) The number of counts for each plume 
height was then converted into a 
probability.  

4) The candidate height with the highest 
probability was then selected as the 
measured height of the SO2 plume.  

Figure 1: Plume map and wind profile plot for single intersection case on 21st June 2021 



Upper and lower bounds on the height 
were also calculated by varying the 
propagation angle within the standard 
deviation and noting the maximum and 
minimum heights at which there was an 
intersection with the wind profile. The linear 
retrieval takes just a few seconds per pixel 
and the wind profile (WP) method takes 
around 15 seconds to run, allowing plume 
heights to be calculated in near real time. 
 
This method was run for the ascending and 
descending orbits for each day in which a 
plume was detected (5 or more pixels in the 
plume) using IASI data from MetOp-A 
during a period from 2016-2021. The 
resulting WP heights were then compared 
with the IR heights. The 2021 results were 
also compared against heights from the 
Global Volcanism Program (GVP) bulletin 
report. GVP bulletin reports for Etna are 
compiled from weekly and special reports 
by the Osservatorio Etneo, the regional 
branch of Italy’s national volcano institute. 
These reports contain plume height 
measurements which use data from two 
ground-based visible cameras as well as 
the Spinning Enhanced Visible and Infrared 
Imager (SEVIRI) based on the Meteosat 
Second Generation satellites to estimate 
plume height with an uncertainty of 500 m 
[11,12]. The report can lack detail and often 
doesn’t specify whether the height 
measurement has used remote sensing, 
ground observation, or a combination of 
both. Since heights obtained from ground-
based cameras are limited by viewing 

angle to a maximum altitude of 9 km, some 
of the heights given as 9 km are likely to be 
underestimates [13].   
    
3 Wind Method Results 
 
3.1     Number of Intersections 
 
Out of a total of 4200 (2100x2) orbits 
between 1st Jan 2016 and 30th Sept 2021, 
a plume was identified in 247 cases. A 
height was found in 188 (76%) of these 
orbits meaning there were 59 orbits for 
which the plume angle did not intersect the 
wind profile. The number of intersections in 
each measurement is plotted in Figure 3 
which shows that just 60/188 (32%) heights 
were single intersection cases for which a 
distinguishing method was not needed.   

Figure 2: Plume map and wind profile plot for multiple intersection case on 4th March 2021 
 

Figure 3: Bar graph showing the relative 
frequencies of the number of intersections of 
plume angle with wind profile for all height 
measurements from 2016 to 2021 
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3.2  Example Cases and 
Limitations 

 
The angle algorithm appeared to correctly 
identify the direction of propagation in most 
cases. Examples of this are Figures 1 and 
2 which identify the SO2 plumes on 21st 
June and 4th March to be positioned with 
respect to Etna at bearings of 116±5° and 
68±6° respectively. On 21st June there was 
only a single intersection at 8.4±0.3 km. 
However, on 4th March the plume angle 
intersected the wind profile 7 times at 
heights ranging from 4.8 km to 16.8 km. 
The bin method was then used to select the 
height as 6.9 km. The errors on this height 
were large due to the shape of the wind 

profile which gave a lower bound of 3.8 km 
and an upper bound of 17.2 km. 
 
There were, however, instances in which 
the angle calculation was limited in its 
accuracy. Figure 4 shows an example of a 
plume angle for which the height could not 
be found as there was no intersection with 
the wind profile. It appears from the map 
that there are two separate plumes in the 
image. The algorithm has broken down as 
it has found the angle of one of the plumes 
which does not intersect with the wind 
profile. The same issue occurs for other 
plume shapes with a large spread of 
angles. Figure 5 highlights two other events 
for which the plume’s direction of travel is 

Figure 4: Plume map and wind profile plot for a case in which there is no intersection on 12th Feb 2017 

Figure 5: Plume maps in which direction is unclear. On the 20th August 2021 (left), there is a large plume which 
extends across Etna to the NE and SW. On the 17th May 2016 (right) the plume appears to change direction. 



unclear. Since the method has been tested 
on a large dataset, results are automated 
and therefore such cases have not been 
eliminated from the study, however, they 
could easily be identified by eye and 
discounted if the method were to be used 
for a particular eruption. 
 
Another cause of error in the WP method is 
the variation of wind profile with time and 
location. As described in the methods 
section, the wind profile used is at the 
closest hour to when the pixels are imaged 
by IASI, interpolated to Etna. The plume 
may have been propagating for up to 12 
hours from eruption by the time it is first 
imaged by IASI. During this time, and over 
this distance, the wind direction at the 
altitude of the plume may have changed 
somewhat. This can lead to there being no 
intersections of the plume angle with the 
wind profile, or to an erroneous height. 

Since the method is independent of 
eruption time, a control cannot be placed 
on the maximum time since eruption, 
however, the maximum distance of the 
plume from Etna can be limited. In this 
study this distance is 500 km, however, this 
could be reduced going forward to improve 
results. A summary of the limitations of the 
WP technique are given in Table 1. 
 
3.3 Comparison with Iterative 

Retrieval Heights 
 
Figure 6 shows the measured plume 
heights plotted during an eruptive episode 
beginning in February 2021. Dates such as 
19th Feb and 22nd Feb display a good match 
when comparing the WP height to the IR 
height with the measured plumes differing 
by 0.55 km and 0.10 km respectively, 
agreeing well within errors. Both results 

Table 1: A Summary of the WP method’s limitations, their effects, and how they have been mitigated. 

Figure 6: Timeseries comparing WP heights with GVP and IR heights during Feb and March 2021 



were cases in which the plume angle only 
intersected the wind profile once. Other 
dates such as 26th Feb and 17th March 
show a significant difference between WP 
and IR measured heights. On 28th Feb and 
5th March the bin method appeared to 
correctly select the heights from the 
multiple intersection heights since the 
nearest height to the IR height was chosen. 
However, on 7th March the wrong height 
intersection is selected with respect to the 
IR.  
 
Tables 2 and 3 show the agreement 
between WP and IR heights for events 
between 2016 and 2021. The threshold of 
1.5 km is used as the measure of 
agreement since it is roughly the typical 
thickness of a volcanic plume. These 
results show good agreement between 
methods given the limitations that exist with 
both techniques. The agreement is 
improved by increasing the minimum 
plume size and limiting the number of 
intersections. These quality controls will be 
discussed in Section 3.5.  
 
3.4  Comparison with Global 

Volcanism Report 
 
GVP heights were compared with WP and 
IR heights for 13 events during 2021. Nine 
of these are plotted in Figure 6 during the 
Feb-March eruptive episode. Table 4 
shows that the agreement between GVP 
heights and WP heights was significantly 
better than with IR heights (54% within 1.5 
km compared with 23%).  
 

Table 2: Comparison of WP and IR heights 
for all events between 2016 and 2021 

Table 3: Comparison of WP and IR heights for 
single intersection events between 2016 and 2021 
 
 

Table 4: Comparison of GVP heights against WP and IR heights (for 13 events in 2021) 
 
 

Figure 7:  Comparing plume height distribution 
of different methods (for plumes consisting of 
at least 10 pixels) 



To investigate the difference in the height 
methods further, height distributions were 
plotted for each method in Figure 7. This 
shows that IR heights tended to be 
significantly lower than both WP and GVP 
heights with a mean plume height of 5.1 km 
compared with 7.3 km and 7.8 km 
respectively. A possible explanation for the 
discrepancy between GVP and IR height 
distribution is the small sample size of GVP 
data. It also could be that the GVP bulletin 
only reports on significant plumes, skewing 
the mean plume height. However, the 
apparent agreement of the GVP and WP 
heights and distributions would suggest 
that the IR may not be producing reliable 
height measurements for SO2 emissions at 
Etna as it seems to be underestimating the 
plume height. This therefore effects the 
overall validation of the WP method. 
Comparison with other methods of height 
measurement is therefore recommended 
to further test the accuracy and reliability of 
the WP technique. 
 
3.5  Developing a Quality Control 
 
Tables 2 and 3 demonstrate that increasing 
the minimum plume size and limiting the 
number of intersections leads to an 
improved agreement between methods 
and reduces the number of erroneous 
results. In this section we develop a quality 
control that can be used to determine the 
plume shapes and wind profiles for which 
the WP technique is applicable. 
 
3.5.1  Minimum Plume Size 
 
To include as many events as possible, the 
minimum pixel number in the plume was 
initially set to 5. Table 2 shows that 
increasing the minimum plume size from 5 
pixels to 30 pixels increases the likelihood 
of the WP height agreeing with the IR 
height from 55% to 88%. This trend is even 
clearer in the single intersection case (see 
Table 3) which rises from 63% agreement 
to 100% (8/8) agreement. Furthermore, 
plotting the Pearson correlation coefficient 
between WP and IR heights against 
minimum plume size (Figure 8) shows a 
similar positive trend with a large jump in 
correlation around at 20 pixels. Therefore, 
the recommendation of the minimum plume 

size for which the method should be 
applied is 20 pixels. 
 
These results show clearly that minimum 
plume size is an important metric for 
determining the accuracy of the WP 
method. This could be due to many factors. 
Increasing the minimum pixel threshold 
reduces the likelihood of the plume being 
falsely detected due to anomalous surface 
temperatures or gas concentrations. 
Having more pixels also improves the 
accuracy of the plume angle algorithm as 
there are more location coordinates 
available. It is possible that the IR height 
estimates also improve with the number of 
pixels since a larger plume may mean 
higher concentrations of SO2. In addition, 
there would be more pixels from which to 
take the average, hence reducing the 
sampling error.  

 
3.5.2 Wind Profile Control 
 
A limitation on the WP technique is that in 
many cases (such as Figure 2), the 
difference between upper and lower 
bounds is so great the result is not useful. 
In these cases, the plume angle often 
intersects the wind profile multiple times at 
different heights.  Often these heights 
cannot be reliably distinguished by the bin 
method without additional information. 
Therefore, for the WP technique to be 
accurate, certain conditions on the plume 
and wind profile are required. Limiting the 
wind profile to only cases in which there is 

Figure 8: Plot showing how correlation 
between WP and IR heights improves as 
minimum plume size increases 



a single intersection greatly improves the 
accuracy of the height measurements, 
however, single intersection wind profiles 
only occur around 32% of the time and 
hence cannot be relied upon.  
 
An alternative indicator of a good wind 
profile and small angular plume spread is 
the difference between lower and upper 
bounds on the WP height. A small 
difference in bounds suggests a 
monotonic, shallow gradient wind profile 
and a tight angular plume distribution such 
as that of Figure 1. It was found that when 
minimum plume size was set to 10 pixels 
and the upper and lower bounds differ by 2 
km or less, the WP method agreed with IR 
heights in 70% of cases, compared with 
60% when removing the limits on bounds. 
This agreement increases further when 
limiting plume size and eliminating irregular 
plume shapes by eye. 
 
4    Conclusions 
 
This work has developed a method to 
estimate volcanic plume height using wind 
direction and IASI linear retrieval data. The 
method was tested against the Carboni et 
al. (2012,2016) iterative retrieval technique 
for eruptions of Etna between 2016 and 
2021. 
 
The WP method’s simplicity and speed of 
algorithm make it well suited to measuring 
plume height from volcanoes across the 
globe in near real time. However, the study 
found that the technique produces a good 
estimate of SO2 plume height only when 
specific conditions on the plume and the 
wind profile are met. Firstly, it requires that 
the plume is significant (at least 20 pixels) 
and has a tight angular spread (within 10°). 
Secondly, the wind direction must vary 
sufficiently with height such that the bounds 
on the plume height are close (within 2 km). 
Finally, the method requires that the wind 
direction does not change significantly over 
the time during which the plume has 
propagated. When these conditions were 
met, the study found that the WP heights of 
SO2 plumes from Etna between 2016 and 
2021 showed a good correlation with IR 
heights and agreed within errors in 68% of 
cases. This result was improved to 83% 

when removing the cases in which there 
were multiple intersections with the wind 
profile.  
 
To be able to distinguish heights effectively 
in the case with many intersections, more 
information on the plume and/or wind 
profile would be required. A possible future 
amendment would be to utilise successive 
IASI images of the same plume from 
multiple MetOp satellites to infer the speed 
of the plume. Alternatively, the plume 
speed could be calculated using the 
eruption time. Comparing this speed to the 
wind profile (speed plotted against altitude) 
could then allow the true plume height to be 
distinguished.  However, using successive 
images of the plume or an eruption time 
would infringe on a primary aim of the 
method which was to work with only a 
single image and no additional eruption 
information. 
 
To improve the method, the plume angle 
algorithm could be developed to take the 
column amount of each pixel into account 
as well as the distance from the point of 
emission. The bearing could then be 
weighted to favour pixels which are closer 
to the eruption site and have larger 
amounts of SO2. Further work could also be 
done to qualitatively assess which plume 
shapes and plume distributions the method 
will produce erroneous results for. The 
study should be extended to more 
volcanoes to verify that it is effective at 
measuring plume height for different types 
of eruptions in other locations. In addition, 
since the technique is very general, it could 
be extended to other instruments and to 
ash, allowing it to be tested in a variety of 
scenarios. Finally, it would be beneficial to 
test the WP method against other plume 
height measurement methods to improve 
the reliability of the results. 
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Appendix A: Source Code 
 
import scipy.io as sio 

import scipy.stats as sst 

import numpy as np 

import matplotlib.pyplot as plt 

import cartopy.crs as ccrs 

import glob 

from datetime import datetime 

import pytz 

 

def 

time_since_2000(year,month,day,hour,min,region):   

# Input using local time 

    epoch_time = datetime(2000, 1, 1) 

    if region=='etna': 

        if int(month) in [1, 2, 3, 11, 12]:  # CET 

time 

            offset = 1 

        if int(month) in [4, 5, 6, 7, 8, 9, 10]:   

# CEST time 

            offset = 2 

    else: 

        print('Not Etna') 

        offset = 0 

    event_time = datetime(int(year), int(month), 

int(day), hour + offset, min) 

    dt = event_time - epoch_time  

    time_2000 = dt.total_seconds() 

    return time_2000  # Output is total seconds 

from 2000 UTC to event 

 

# This function imports the wind profile 

def wind_profile(year,month,day,hour,region):  

    profile = 

glob.glob("/network/group/aopp/eodg/RGG008_GRAINGER

_IASIVOLC/taylor/ecmwf_profs/{}/{}/{}/ECprofs_{}{}{



}_{}.sav".format(region, year, month, year, month, 

day, hour)) 

    p = sio.readsav(profile[0]) 

    height = p.wind_profs.z[0]  # Height in km 

    wd = p.wind_profs.wd[0]  # Wind direction (deg) 

    ws = p.wind_profs.ws[0]  # Wind speed in m/s 

    return height,wd,ws 

 

# This function reads in Linear retrieval data for 

a given IASI orbit 

def read_in_so2(year,month,day,ascend,flag): 

    files = glob.glob( 

"/gf4/eodg/RGG008_GRAINGER_IASIVOLC/taylor/iasi/so2

_out/standard-globe_v3-1/lin/{}/{}/standard-

globe_v3-1_lr_iasi-a_{}{}{}_????.sav".format( 

            year, month, year, month, day)) 

 

    # Select ascending or descending 

    if ascend == 1: 

        marker = 'A' 

    else: 

        marker = 'D' 

    long = np.zeros(0) 

    lati = np.zeros(0) 

    pixel_time = np.zeros(0) 

 

    # Read in all files for specific day 

    for i in range(len(files)): 

 

        file = files[i] 

        s = sio.readsav(file) 

 

        latitude = s.lr_so2.lats[0] 

        longitude = s.lr_so2.lons[0] 

        index = s.lr_so2.v3_idx[0] 

        direction = s.lr_so2.direction[0] 

        pix_time = s.lr_so2.time[0] 

        if np.isscalar(index) and flag == 1:       

# Highlights instance in which no pixels are 

flagged 

            continue 

        lon = np.zeros(0) 

        lat = np.zeros(0) 

        pix_t = np.zeros(0) 

 

        if flag == 1:  # choosing only flagged 

pixels 

            longitude = longitude[index] 

            latitude = latitude[index] 

            direction = direction[index] 

            pix_time = pix_time[index] 

 

        for j in range(len(direction)):  # For a 

given file, compiles data for ascending/descending 

            if marker in str(direction[j]): 

                lon = np.append(lon, longitude[j]) 

                lat = np.append(lat, latitude[j]) 

                pix_t = np.append(pix_t, 

pix_time[j]) 

 

        # Compiles all data on a given day  

        long = np.append(long, lon) 

        lati = np.append(lati, lat) 

        pixel_time = np.append(pixel_time, pix_t) 

 

    return lati, long, pixel_time, len(files) 

 

# This function returns distance and bearing 

between eruption and flagged pixel 

def 

dist_ang(lat0,lon0,lat1,lon1,dist_flag,angle_flag): 

 

    phi1 = lat1 * np.pi / 180 

    lamda1 = lon1 * np.pi / 180 

    phi0 = lat0 * np.pi / 180 

    lamda0 = lon0 * np.pi / 180 

    d_phi = phi1 - phi0 

    d_lamda = lamda1 - lamda0 

    d = 0 

    if dist_flag==1: 

        a = (np.sin(d_phi / 2)) ** 2 + np.cos(phi1) 

* np.cos(phi0) * (np.sin((d_lamda) / 2)) ** 2 

        c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-

a)) 

        d = c * 6371e3  # Distance calculator 

    theta = 0 

    if angle_flag ==1: 

        theta = (450 - np.arctan(d_phi / d_lamda) * 

(180 / np.pi)) % 360   

# Calculates angle of plume pixels from eruption  

        if d_lamda < 0: 

            theta = theta + 180 

    return d, theta 

 

# This function finds the angle, time since 

emission, distance from source and coordinates of 

pixels in the plume 

def 

plume(lati,long,pixel_time,lat0,lon0,t_erupt_s,dmax

,use_speed): 

    bearing = np.zeros(0) 

    dist = np.zeros(0) 

    lon_plume = np.zeros(0) 

    lat_plume = np.zeros(0) 

    pix_time = np.zeros(0) 

    speed_plume = np.zeros(0) 

 

    for i in range(len(long)): 

        d, _ = 

dist_ang(lat0,lon0,lati[i],long[i],1,0) 

        if d <= dmax:  # Selects only 'close' 

pixels in plume 

            _, theta = 

dist_ang(lat0,lon0,lati[i],long[i],0,1) 

            if use_speed==1: 

                elapsed_time = pixel_time[i] - 

t_erupt_s 

                pix_speed = d / elapsed_time 

                speed_plume = 

np.append(speed_plume, pix_speed) 

 

            pix_time = np.append(pix_time, 

pixel_time[i]) 

            bearing = np.append(bearing, theta) 

            dist = np.append(dist, d) 

            lon_plume = np.append(lon_plume, 

long[i]) 

            lat_plume = np.append(lat_plume, 

lati[i]) 

    return bearing, dist, lon_plume, lat_plume, 

speed_plume, pix_time 

 

# This function finds the mean plume angle and 

standard deviation 



def angles(bearing,lat_plume,lon_plume): 

    # Determine an average angle 

    devs = np.zeros(0) 

    lats = np.zeros(0) 

    lons = np.zeros(0) 

    med = np.median(bearing) 

    for j in range(len(bearing)): 

        alpha = (bearing[j] - med + 360) % 360 

        if alpha > 180: 

            alpha = alpha - 360 

        if -10 < alpha < 10: 

            devs = np.append(devs, alpha) 

            lats = np.append(lats,lat_plume[j])    

# Finds pixels of plume (to be compared with ir 

height) 

            lons = np.append(lons,lon_plume[j]) 

    pl_angles = (devs + med + 360) % 360 

    st_dev = np.std(devs) 

    mean = (np.mean(devs) + med + 360) % 360 

    return pl_angles, st_dev, mean, lats, lons 

 

# This function returns all intersection heights of 

plume angle with wind profile 

def int_(angle, height, wd, alt, hmax): 

    intersection = np.zeros(0) 

    for i in range(len(wd) - 1): 

        if wd[i] < angle < wd[i + 1] and alt < 

height[i] < hmax: 

            int = height[i] + (angle - wd[i]) * 

(height[i + 1] - height[i]) / (wd[i + 1] - wd[i]) 

            if int>hmax: 

                int=hmax 

            elif int<alt: 

                int=alt 

            intersection = np.append(intersection, 

int) 

        if wd[i + 1] < angle < wd[i] and alt < 

height[i] < hmax: 

            int = height[i] + (angle - wd[i]) * 

(height[i + 1] - height[i]) / (wd[i + 1] - wd[i]) 

            if int>hmax: 

                int=hmax 

            elif int<alt: 

                int=alt 

            intersection = np.append(intersection, 

int) 

    return intersection 

 

# This function imports location and altitude of 

given volcano 

def region_(region): 

    if region == 'etna': 

        lat0 = 37.748 

        lon0 = 14.999 

        xscale = 12 

        yscale = 8 

        lon_min = lon0 - xscale 

        lon_max = lon0 + xscale 

        lat_min = lat0 - yscale 

        lat_max = lat0 + yscale 

        alt = 3.3  # km 

    else: 

        print('NOT ETNA -> NO DATA') 

 

    return lat0, lon0, lon_min, lon_max, lat_min, 

lat_max, alt 

 

# This function reads in Iterative Retrieval data 

for a given IASI orbit 

def ir_heights(year,month,day): 

    files = 

glob.glob("/gf4/eodg/RGG008_GRAINGER_IASIVOLC/taylo

r/iasi/so2_out/standard-globe_v3-

1/ir/{}/{}/standard-globe_v3-1_ir_iasi-

a_{}{}{}_????.sav".format(year, month, year, month, 

day)) 

    lons = np.zeros(0) 

    lats = np.zeros(0) 

    kms = np.zeros(0) 

    kms_error = np.zeros(0) 

    qcs = np.zeros(0) 

 

    for i in range(len(files)): 

        file = files[i] 

        s = sio.readsav(file) 

        qc = s.ir_so2.QC10 

        lon = s.ir_so2.lon 

        lat = s.ir_so2.lat 

        km = s.ir_so2.km 

        km_error = s.ir_so2.km_error 

        for j in range(len(km_error)): 

            if km_error[j]>km[j]: 

                km_error[j] = km[j] 

        qcs = np.append(qcs,qc) 

        lons = np.append(lons, lon) 

        lats = np.append(lats, lat) 

        kms = np.append(kms, km) 

        kms_error = np.append(kms_error, km_error) 

    return lats, lons, kms, kms_error, qcs, 

len(files) 

 

# This function finds the plume height as measured 

by IR 

def 

ir_plume_height(ir_lats,ir_lons,lat_plume_x,lon_plu

me_x,ir_kms,ir_kms_err, qcs): 

    count_qc_0 = 0 

    ir_height = np.zeros(0) 

    ir_height_err = np.zeros(0) 

    for j in range(len(lat_plume_x)): 

        for i in range(len(ir_lats)): 

            if lat_plume_x[j] == ir_lats[i] and 

lon_plume_x[j] == ir_lons[i]: 

                print(qcs[i]) 

                if qcs[i]==1: 

                    ir_height = 

np.append(ir_height, ir_kms[i]) 

                    ir_height_err = 

np.append(ir_height_err, ir_kms_err[i]) 

                elif qcs[i]==0: 

                    count_qc_0 = count_qc_0+1 

                break 

    points_in_IR_plume = len(ir_height) 

    nans_in_IR_plume = 

np.count_nonzero(np.isnan(ir_height)) 

    mean = np.nanmean(ir_height) 

    std = np.nanstd(ir_height) 

    index = np.zeros(len(ir_height),dtype=bool) 

    for i in range(len(ir_height)): 

        if mean-(3*std)<ir_height[i]<mean+(3*std) 

and isinstance(ir_height[i],float): 

            index[i] = 1 

    ir_height_mean = np.mean(ir_height[index]) 

    ir_height_err1 = np.std(ir_height[index]) 



    ir_height_err2 = np.mean(ir_height_err[index]) 

    ir_height_errx = 

np.max([ir_height_err1,ir_height_err2]) 

 

    return ir_height_mean, ir_height_err1, 

ir_height_err2, ir_height_errx, points_in_IR_plume, 

nans_in_IR_plume, count_qc_0 

 

# This function finds upper and lower limits on the 

plume height 

def height_limits(mean, st_dev, height, wd, alt, 

hmax): 

 

    spread = np.linspace(mean - st_dev, mean + 

st_dev, 15)  # Finds heights where standard spread 

of angles intersect 

 

    spread_ints = np.zeros(0) 

    for i in range(len(spread)):  # Calculates 

lower and upper limits on height 

        ints = int_(spread[i], height, wd, alt, 

hmax) 

        spread_ints = np.append(spread_ints, ints) 

    if len(spread_ints) <2: 

        h_upper,h_lower = 0,0 

    else: 

        h_upper = np.max(spread_ints) 

        h_lower = np.min(spread_ints) 

 

    return h_lower, h_upper 

 

# This function outputs the probability of each 

intersection height using the bin method 

def bin_distinguish(mean_int, pl_angles, height, 

wd, alt, hmax, half_bin): 

 

    intersect = np.zeros(0) 

 

    for j in range(len(pl_angles)): 

        for i in range(len(wd) - 1): 

            if wd[i] < pl_angles[j] < wd[i + 1] and 

alt < height[i] < hmax: 

                int = height[i] + (pl_angles[j] - 

wd[i]) * (height[i + 1] - height[i]) / (wd[i + 1] - 

wd[i]) 

                intersect = np.append(intersect, 

int) 

            if wd[i + 1] < pl_angles[j] < wd[i] and 

alt < height[i] < hmax: 

                int = height[i] + (pl_angles[j] - 

wd[i]) * (height[i + 1] - height[i]) / (wd[i + 1] - 

wd[i]) 

                intersect = np.append(intersect, 

int) 

    count = np.zeros([1, len(mean_int)]) 

    for i in range(len(mean_int)): 

        for j in range(len(intersect)): 

            if -half_bin < intersect[j] - 

mean_int[i] < half_bin: 

                count[0, i] = count[0, i] + 1 

    prob = count / np.sum(count) 

    return prob 

 

# This function converts u and v vectors into a 

bearing 

def wind_direction(u,v):  

    wd = np.zeros(len(u)) 

    for i in range(len(u)): 

        wd[i] = (450 - np.arctan(v[i] / u[i]) * 

(180 / np.pi)) % 360  # calculates angle of plume 

pixels from eruption 

        if u[i] < 0: 

            wd[i] = wd[i] + 180 

    return wd 

 

# Input specific orbit here 

year = "2021" 

month = "03" 

day = "01" 

ascend = 1 

# Parameters set here 

dmax = 5e5 

hmax = 18 

half_bin = 1 

region = 'etna' 

lat0, lon0, lon_min, lon_max, lat_min, lat_max, alt 

= region_(region)  # Reads in volcano details 

 

# Resets all data 

plume_found, focused_plume_size, 

points_in_IR_plume, nans_in_IR_plume, hour,  

IR_files, mean, st_dev, mean_int, h_lower, h_upper, 

prob, ir_height_mean, ir_height_err1, 

ir_height_err2, ir_height_errx, count_qcs_0 = 

False,0,0,0,'',0,0,0,0,0,0,0,0,0,0,0,0 

 

lati, long, pixel_time, LR_files = 

read_in_so2(year, month, day, ascend, 1) 

bearing, dist, lon_plume, lat_plume, speed_plume, 

pix_time = plume(lati, long, pixel_time, lat0, 

lon0,0, dmax,0) 

points_within_dmax = len(bearing) 

 

if points_within_dmax > 5:  # Checks enough pixels 

 

    # Create map for plot 

    fig = plt.figure(figsize=(11, 8.5)) 

    ax = 

plt.axes(projection=ccrs.PlateCarree(central_longit

ude=0)) 

    ax.set_extent([lon_min, lon_max, lat_min, 

lat_max], crs=ccrs.PlateCarree()) 

    ax.coastlines() 

    gl = ax.gridlines(draw_labels=True) 

    gl.alpha = 0.5 

    gl.xlocator = plt.MaxNLocator(6) 

    gl.ylocator = plt.MaxNLocator(6)    

plt.scatter(lon0,lat0,marker='^',s=50,c='black') 

 

    # Labels plots with date + asc/des + region 

    if ascend == 1: 

        plt.title('Volcanic Plume (Ascending orbit) 

on ' + day + '/' + month + '/' + year) 

        mark = 'Asc' 

    else: 

        plt.title('Volcanic Plume (Descending 

orbit) on ' + day + '/' + month + '/' + year) 

        mark = 'Des' 

 

    pl_angles, st_dev, mean, lat_plume_x, 

lon_plume_x = angles(bearing, lat_plume, lon_plume)  

# Creates focused plume 

    focused_plume_size = len(pl_angles) 

 



    if focused_plume_size > 5:  # Check focused 

plume is large enough 

        plume_found = True 

        # Draws line for average bearing and 

standard deviation, plots on map 

        x1 = np.linspace(lon0, lon0 + np.sin(mean * 

np.pi / 180) * dmax / 111e3) 

        x2 = np.linspace(lon0, lon0 + np.sin((mean 

- st_dev) * np.pi / 180) * dmax / 111e3) 

        x3 = np.linspace(lon0, lon0 + np.sin((mean 

+ st_dev) * np.pi / 180) * dmax / 111e3) 

        y1 = lat0 + np.tan(np.pi / 2 - mean * np.pi 

/ 180) * (x1 - lon0) 

        y2 = lat0 + np.tan(np.pi / 2 - (mean - 

st_dev) * np.pi / 180) * (x2 - lon0) 

        y3 = lat0 + np.tan(np.pi / 2 - (mean + 

st_dev) * np.pi / 180) * (x3 - lon0) 

 

        plt.scatter(lon_plume, lat_plume, s=1, 

label = 'Flagged pixel') 

        plt.plot(x1, y1, color='red', 

transform=ccrs.PlateCarree(), label='Mean Bearing') 

        plt.plot(x2, y2, color='orange', 

transform=ccrs.PlateCarree(), label = 'Standard 

Deviation') 

        plt.plot(x3, y3, color='orange', 

transform=ccrs.PlateCarree()) 

 

        fname1 = year + '_' + month + '_' + day + 

'_' + mark + '_map.png' 

        plt.legend() 

        plt.savefig(fname1) 

 

        # Find hour for wind profile 

        med_pixel_time = np.median(pix_time) 

        start_of_day = 

time_since_2000(year,month,day,00,00,region) 

        hour = f'{int(np.round((med_pixel_time-

start_of_day)/3600)):02d}' 

        height, wd, ws = wind_profile(year, month, 

day, hour, region)  # Reads in wind profile 

        mean_int = int_(mean, height, wd, alt, 

hmax)  # Finds heights where mean angle intersects 

        if len(mean_int) > 0: 

            h_lower, h_upper = height_limits(mean, 

st_dev, height, wd, alt, hmax)  # Finds height 

limits 

            prob = bin_distinguish(mean_int, 

pl_angles, height, wd, alt, hmax, half_bin) 

            height_distinguished = 

mean_int[np.argmax(prob[0])] 

        ir_lats, ir_lons, ir_kms, ir_kms_err, qcs, 

IR_files = ir_heights(year, month, day) 

 

        ir_height_mean, ir_height_err1, 

ir_height_err2, ir_height_errx, points_in_IR_plume, 

nans_in_IR_plume, count_qcs_0 = 

ir_plume_height(ir_lats, ir_lons, lat_plume_x, 

lon_plume_x, ir_kms, ir_kms_err, qcs) 

 

        plt.figure()  # Plots angle distribution 

histogram 

        plt.hist(bearing) 

        plt.axvline(mean + st_dev, 

color='orange',label='Standard deviation') 

        plt.axvline(mean - st_dev, color='orange') 

        plt.axvline(mean, color='red',label='Mean') 

        plt.title('Distribution of plume angle on ' 

+ day + '/' + month + '/' + year + ' at ' + hour + 

'00') 

        plt.xlabel('Bearing in degrees') 

        plt.ylabel('Frequency density') 

        plt.legend() 

        fname2 = year + '_' + month + '_' + day + 

'_' + mark + '_angles.png' 

        plt.savefig(fname2) 

        plt.figure()  # Plots wind profile and 

intersection 

        plt.title('Wind Profile of Etna on ' + day 

+ '/' + month + '/' + year + ' at ' + hour + '00') 

        plt.ylim([alt, hmax]) 

        plt.xlabel('Wind direction in degrees') 

        plt.ylabel('Height (km)') 

        plt.scatter(wd, height,label='ECMWF 

Profile') 

        plt.axvline(mean, color='red',label='Mean 

bearing') 

        plt.axvline(mean - st_dev, color='orange') 

        plt.axvline(mean + st_dev, color='orange') 

        

plt.hlines([h_upper,h_lower],color='orange',xmin = 

0, xmax = mean, label='Lower and Upper bounds') 

        if len(mean_int) > 0: 

            plt.hlines(mean_int, xmin=0, xmax=mean, 

color='green',label='Height intersection') 

        plt.legend() 

        fname3 = year + '_' + month + '_' + day + 

'_'+hour+'00'+'_' + mark + '_profile.png' 

        plt.savefig(fname3) 

 

print(plume_found, year, month, day, ascend, 

points_within_dmax, focused_plume_size, 

points_in_IR_plume, nans_in_IR_plume, hour, 

LR_files, IR_files, mean, st_dev, mean_int, 

h_lower, h_upper, 

prob,ir_height_mean,ir_height_err1,ir_height_err2, 

ir_height_errx,count_qcs_0) 

data = [plume_found, year, month, day, ascend, 

points_within_dmax, focused_plume_size, 

points_in_IR_plume, nans_in_IR_plume, hour, 

LR_files, IR_files, mean, st_dev, mean_int, 

h_lower, h_upper, 

prob,ir_height_mean,ir_height_err1,ir_height_err2, 

ir_height_errx,count_qcs_0] 

 

plt.show() 

 

 
 



 


