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1 Abstract

The Hunga Tonga-Hunga Ha‘Apai volcano erupted violently in 2022, creating
a massive plume reaching well into the mesosphere. This reports attempts to
computationally recreate the conditions of the eruption to explain the plume‘s
exceptional height and why it is so rare. It was found that the atmospheric
conditions in Tonga were ideal for the formation of a plume with a very high
equilibrium altitude. The collapse of the caldera caused the plume to reach
this altitude with a high inertial velocity, hence the maximal height reached
high above the equilibrium height. The Tonga volcano had access to a vast
amount of water vapor due to its submarine nature. This high concentration
of volatiles allowed for buoyancy under the aforementioned conditions, which
would normally result in a collapse of the plume, explaining the rarity of the
event.

2 Introduction

Despite a relatively large number of studies on the dynamics of volcanic plumes,
it remains difficult to use quantitative tools to describe or predict many of the
behaviours observed in some recent volcanic explosions. On the 15th of January
2022, the Hunga Tonga-Hunga Ha‘Apai (HTHH) volcano erupted violently with
the plume reaching a maximum height of about 57 km, well into the Mesosphere.
Plumes this massive can have a large effect on air traffic and could potentially
disturb the ozone layer in extreme cases. Models that could predict the dynamics
of these plumes or even make estimations based on parameters known before
the eruption have a potential to contribute in keeping the effects of eruptions
under control, but they are not widely used at the moment. Especially the
plume height is currently mostly used as a way to derive the mass eruption
rate through a power law, initially proposed by Morton in 1956 [9]. The mass
eruption rate is difficult to measure and the law is thus hard to test. It is
also impossible to determine the mass eruption rate before an eruption or use
it to predict any dynamics of the plumes. This makes the usefulness of this
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law questionable at best, especially since it has been shown to break down for
plumes above 35 km [12]. Hence the need for a more sophisticated method
using a complete dynamical model that can be solved numerically to describe
the behaviour of plumes and potentially predict their future dynamics. In this
report, a model described by Woods 1993 [14] will be implemented to justify the
extraordinary maximum height of the HTHH volcano and describe some other
phenomena observed in the plume. In the next section, the background and
relevant information will be laid out, followed by a section on the model that
will be used.

3 Hunga Tonga-Hunga Ha‘Apai eruption

The HTHH volcano lies in the Western South Pacific Ocean with coordinates
20.536°S, 175.382°W, about 2000km north of New Zeeland. The volcano has
been relatively silent from 1900 to 2014 with only 5 recorded minor eruptions.
After 2014, the volcano started to become more active, with a streak of eruptions
in December 2021 [5]. Eventually culminating in the climactic eruption on
the 15th of January 2022, causing an eruption column up to 57km into the
atmosphere and several tsunamis hitting nearby islands. [1]

The most notable features of the explosion were the caldera collapse and
its submarine nature: the volcano was submersed under about 200 m of ocean.
This in combination with the caldera collapsing allowed for a vast amount of
water to enter the magma chamber, adding a large quantity of volatiles to the
eruption plume.

At an altitude of approximately 30-35 km, clouds were observed around the
volcanic plume, this observation was further confirmed by the measurement of
large quantities of water in the stratosphere at around this altitude. [8]

4 The model

The model outlined in the following section was first implemented by Andrew
W. Woods [14] and used for all the calculations in this report. The model is
based on the conservation of mass, momentum, energy and water content and
includes the effects of water vapor and its condensation. The first equation
involves the conservation of mass:

d

dz
(ρub2) = 2ϵbuρa

where b denotes the plume radius, u the vertical speed, ρ the plume density and
the subscript ”a” denotes that the quantity relates to the ambient atmosphere
and not the plume itself. ϵ is the entrainment coefficient: a dimensionless value
that denotes how much of the ambient air is integrated into the plume. For the
gas-thrust region it is a function of the density but once the plume is buoyant
the entrainment coefficient becomes constant. The HTHH eruption is Plinian,
suggesting thatr the gas-thrust region is very short compared to the buoyant
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region and ϵ will thus be taken to be a constant 0.09 [14]. The following equation
regards the conservation of momentum:

d

dz
(ρu2b2) = b2g(ρa − ρ)

with the symbols having the same meaning as in the previous equation and g
being the gravitational constant. As the effect of liquid water and water vapor
are considered, an equation conserving the total water content is required:

d

dz
(ρub2q) = 2ϵbuqaρa

where q represents the total mass fraction of water, i.e. liquid water and water
vapor combined. The energy equation reads:

d

dz
[ρub2(CpT+u2/2+gz)] = 2ϵbuρa(CpTa+gz)−[S+(Cpv−Cpw)(T−273)]

d

dz
(ub2qaqv)

where Cp is the specific heat at constant pressure in the column and qv is the
mass fraction of water vapor. All other parameters are constants and are given
with their value and justification in Appendix A. This concludes the differential
equations necessary for the model, but there are still more variables than equa-
tions. This can be solved by introducing constraints to the model. The first is
for the ambient temperature, which will be constraint by meteorological data,
and the pressure can then be determined from the hydrostatic balance:

d

dz
P = − gP

RaT

which defines the density through the ideal gas law. It is assumed that small
sediments in the plume won‘t have enough time to form larger rocks that would
fall out of the plume during its rise, hence the amount of solid material is
conserved:

d

dz
((1− n− qw)ρub

2) = 0

where qw = q − qv is the mass fraction of condensed water in the column. To
find the water vapor level of the column and atmosphere the saturation vapor
pressure is used:

es = A exp(−B/Ta)

. It is assumed that the column can be considered as just saturated:

w

1 + w
P = es

This assumption is valid in the column, and hence qv = nw. For the ambient air
a constant, R, which varies between 0 and 1 is introduced to be multiplied by
w, depending on the moist level of the atmosphere (qa = Rw). The island lies
in the tropical region, hence R = 1 will be used throughout the report. Next, it
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is possible to write the total specific heat as a weighted sum of the specific heat
of the different phases:

Cp = (1− n− qw)cvs + ncvg + qwCpw

.The density inside the column can be constraint by:

ρ =

[
n

ρg
+

1− n

ρs

]−1

where ρs is the combined density of solids and liquids in the plume. And ρg is
the density of gasses in the plume and can also be found through the ideal gas
law:

ρg =
P

RgaT

with Rga = wRv + (1 − w)Ra being the bulk gas constant. For a gas mass
fraction above 0.1 (which it is for the vast majority of the plume), the first
term in the density equation starts dominating and the approximation

ρ =
ρg
n

becomes valid.

5 Methods

The model will be used to explain the height the HTHH plume reached and
attempt to understand the relevant parameters which have a large influence on
the rise dynamics. The most important degrees of freedom in the model are the
initial conditions for the parameters in the differential equations: u, b, T, n and
q. For some of these parameters, it is possible to estimate the initial value from
available data but most of them are hard to determine within a reasonable error.
They will each be studied separately to deduce their effect on the plume height
and dynamics. To achieve this a range of initial values will be used to find the
velocity profile of the plume: this profile shows the speed of the particles of the
plume at each altitude level of their ascent. The maximum height is where the
velocity hits zero, and the equilibrium height of the cloud is where the gradient
turns zero. The first parameter that will be studied is the initial vent radius,
b0. The eruption was accompanied by a caldera collapse, and the caldera radius
of about 1.5 km can thus be taken as the initial vent radius for HTHH. To
study the effect of this large radius, several values will be studied, including
ones that would imply no caldera collapse. The second parameter is the initial
velocity, u0. A typical Plinian eruption has initial velocities between 75 and 250
m s-1, and this range will be discussed.The initial temperature range that will
be considered is 800 K-1200 K.

Due to the vast amount of water vapor added to the incoming magma, it can
be assumed that n0 = q0. This approximation is justified as gas fractions purely
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from volcanic origin are of the order of 0.01. This value will be shown to be
too low for the observed dynamics of the HTHH volcano. The extra gas needed
to drive the eruption is expected to come from the large amount of sea water
and vastly outnumbers any other gasses present. Because the exact amount of
added water vapor is difficult to gauge and can have a large effect on the plume
dynamics, its variation will be considered in each of the above cases. Looking
at values between 0.01 (as a comparison with a normal eruption), and 0.8, for
a large amount of water being dropped in.

A secundary objective of the report is to find a good estimation for the water
vapor added to the eruption based on stratospheric water levels in the period
around the eruption. Measurements from ACE on heavy water (HDO/D2O)
concentration will be used to compare the contribution of water coming from
the vent, the ambient air or from the sea water. These sources each have different
initial isotope concentrations:

Source Isotope ratio (Delta D ‰) Isotope ratio (ppm)
Sea water 0 156 [6]

Vent 700 265 [10]
Unperturbed stratosphere -500 78
Stratosphere after eruption -200 125

This data can be used to put constraints on the allowed compositions of
water in the eruption plume in the stratosphere. Assuming that the 3 mentioned
sources are the only ones that influence the final composition, a system with 2
equations and 3 unknowns was set up:

s+ v + a = 1

156s+ 265v + 78a = 125

Where s ,v and a refer to the relative fractions that comes from each of the 3
sources in the final composition. As there are 3 unknowns and only 2 equations,
it is only possible to find trends and constraints on the parameters.
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6 Results

6.1 Initial plume radius

b0 = 50 b0 = 100 b0 = 150 b0 = 750 b0 = 1000 b0 = 1500
n0 = 0.01 2107 1333 1263 1199 1196 1194
n0 = 0.05 45033 46234 47231 1471 1448 1427
n0 = 0.1 45534 45531 47354 2237 2061 1937
n0 = 0.2 45199 46331 47318 52862 54832 58056
n0 = 0.4 45224 45522 46193 52023 56000 60588
n0 = 0.6 45611 45892 47015 53387 55800 61257
n0 = 0.8 45276 46792 46515 52749 56812 61198

Table 1: The maximum height the plume reaches for the given values of initial plume
radius and gas mass fraction, the initial water vapor mass fraction is assumed to be
equal to the total gas mass fraction. Vent radii and maximum heights are given in m.

u0 = 150 m s-1 and T0 = 1000 K.

Figure 1: T0 = 1000 K and u0 = 150 m s-1. Plot of the evolution of the velocity
of the particles in the plume as they ascent to the top, with varying values for
the initial plume radius.

As seen in Figure 1, for n0 = 0.05, a ratio expected in most eruptions, only
small vent eruptions manage to become buoyant but reach a smaller maximal
altitude as they have lower inertia. Only for higher values of n0, which can
only realistically be reached in cases like HTHH, plumes with a high b0 become
buoyant.
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6.2 Initial plume velocity

u0 = 50 u0 = 75 u0 = 100 u0 = 150 u0 = 200 u0 = 250
n0 = 0.01 132 297 529 1194 2130 3345
n0 = 0.05 155 349 624 1427 2606 4255
n0 = 0.1 196 447 810 1937 3907 57794
n0 = 0.2 451 1223 55093 58056 58540 59130
n0 = 0.4 53897 54996 57046 60588 60811 62073
n0 = 0.6 56603 56818 58236 61257 61523 63852
n0 = 0.8 55179 56608 58618 61198 63457 64465

Table 2: The maximum height the plume reaches for the given values of initial plume
velocity and gas mass fraction, the initial water vapor mass fraction is assumed to be

equal to the gas mass fraction. Initial velocities are given in m s-1 and maximal
altitudes in m. b0 = 1500 m and T0 = 1000 K.

Figure 2: T0 = 1000 K and b0 = 1500 m. Plot of the evolution of the velocity of
the particles in the plume as they ascent to the top, with varying values of v0.

As seen in Figure 2, for n0 = 0.05, none of the plumes become buoyant, this
is due to the high value of b0 chosen to conform with the HTHH case. A higher
value of n0 shows that once a minimum initial velocity of 100 m s-1 is reached
such that the plume becomes buoyant, it has very little further effect on the
dynamics of the plume.
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6.3 Initial plume Temperature

T0 = 700 T0 = 800 T0 = 900 T0 = 1000 T0 = 1100 T0 = 1200
n0 = 0.01 1177 1182 1188 1194 1200 1206
n0 = 0.05 1314 1347 1385 1427 1475 1530
n0 = 0.1 1540 1642 1769 1937 2178 2585
n0 = 0.2 2444 3387 56875 58055 56744 57885
n0 = 0.4 61931 57934 58842 60588 58839 58441
n0 = 0.6 60934 60604 60922 61257 60253 58946
n0 = 0.8 62706 63040 61482 61198 59979 61049

Table 3: The maximum height the plume reaches for the given values of initial plume
temperature and gas mass fraction, the initial water vapor mass fraction is assumed
to be equal to the gas mass fraction. Initial temperatures in K and heights again in

m. u0 = 150 m s-1 and b0 = 1500 m.

Figure 3: u0 = 150 m s-1 and b0 = 1500 m. Plot of the evolution of the velocity
of the particles in the plume as they ascent to the top, with varying values of
T0.

For n0 = 0.05, again the plumes do not become buoyant for similar reasons
as in Figure 2 and the plume height is independent of temperature. For n = 0.2
a similar dependency as u0 is observed: a threshold value of T0 is required for
buoyancy, but afterward the dynamics of the plume are very little affected by
the initial temperature.

6.4 Water composition

Figure 4 shows that the percentage coming from sea water must lie in between
9.1% and 57%. The percentage of entrained air lies in between 41% and 70%
and in between 0 and 21% for what percentage of the water comes from the
volcanic vent.
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Figure 4: The constraints on the allowed composition of the water found in the
HTHH eruption plume. To match the measured isotope ratios, the amount of
water that came from the volcanic vent can not exceed 20%.

7 Discussion

7.1 Initial plume radius

Out of the 6 values chosen, the first three represent a case without caldera col-
lapse with relatively small vent radii. The higher values represent very large
initial vents which would correspond to a caldera collapsing. The collapsed
HTHH caldera was estimated to have a 1.5 km radius, hence the final column
from Table 1 is most likely to be aligned with the studied case. For gas mass
fraction around 0.02 only plumes with relatively small vent radii become buoy-
ant. Higher values of b0 reach low peak altitudes as the column collapses. Only
for a vapor mass fraction higher than to be expected from a normal eruption
can these plumes become buoyant. These plumes reach a much higher maxi-
mum velocity than the small vent cases. Despite the equilibrium height being
at roughly the same altitude, inertia manages to push the plumes with a large
initial vent much higher, up to 58 km.

7.2 Initial plume velocity

Similar to the last section, Figure 2 shows that a small vapor mass fraction
doesn‘t allow for buoyancy to occur (given a 1500 m initial vent radius as with
HTHH). Then the maximum height is heavily reliant on initial velocity as the
motion is almost purely ballistic. For a larger vapor mass fraction, as in the
HTHH case, buoyancy occurs at reasonable initial velocities. For a vapor mass
fraction of 0.2, an initial velocity of 100 m s-1 is required. Figure 2 shows that the
peak altitude is not heavily dependent on initial velocity once the plumes become
buoyant. This suggests that it is not necessary to acquire precise measurements
on initial velocities, which can be hard to determine, as long as the buoyancy
conditions are met.
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7.3 Initial plume Temperature

Temperature has a similar effect as initial velocity on the maximum height
reached by the plume. For low vapor mass fractions the plumes are unable to
become buoyant and only reach low altitudes. For higher vapor mass fractions
the initial temperature is only relevant to determine whether the plume becomes
buoyant. Once this condition is met, the variable has little effect on the eventual
plume height. For n0 = 0.2, buoyancy occurs from 900 K onwards.

7.4 Equilibrium height

The equilibrium height can be inferred by finding the altitude at which the ve-
locity gradient is zero, and hence the plume starts slowing down. Non-buoyant
plumes have no equilibrium height as they collapse ballistically. In the buoyant
case, there will be a height at which the plume density equals the ambient air
density and equilibrium is reached. The inertial speed can cause the maximum
height of the plume to be much higher than the equilibrium height, but most
of the material will oscillate back and forth until they settle on the equilibrium
altitude. Figures 1-3 show that the previously discussed factors (initial radius,
speed and temperature) have little effect on the equilibrium height if the plume
becomes buoyant. In all cases, the equilibrium height is roughly at the 35 km
threshold, as expected from the data on vapor loading in the atmosphere. What
does have a big effect on the equilibrium height is the temperature profile of
the atmosphere. It is possbile to investigate the effect of different atmospheric
temperature profiles by keeping the stratosphere constant (as it is mostly invari-
ant under tropospheric changes), but changing the ground level temperatures,
together with the lapse rate to ensure that the temperature is the same at the
tropopause. As seen in Figures 5 and 6, different atmospheres based on different
ground-level temperatures give vastly different results for equilibrium and max-
imum heights. With notably 298 K (the forecasted temperature for the time of
the eruption) giving the highest maximal altitude and an equilibrium height at
the expected 35 km. This explains the stratosphere water levels and clouds be-
ing formed at this altitude as most of the water being carried through the plume
would end up at the equilibrium height. Figure 5 shows that the ground-level
temperature has no effect on whether the plume manages to become buoyant. It
only affects what equilibrium height and maximal height the plumes will reach.
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Figure 5: The effect of the ambient temperature at ground level on the maximal
plume height for the values expected in the HTHH eruption (u0 = 150 m s-1,
b0 = 1500 m, T0 = 1000 K and n0 = 0.2). Note the steep rise from about 290
K, with a maximum at around 298K.

Figure 6: u0 = 150 m s-1, T0 = 1000 K and b0 = 1500 m. Plots of the
velocity profiles for different atmosphere temperature profiles by changing the
ground-level temperature and tropospheric lapse rate to ensure that the profile is
invariant from the stratosphere onwards. Note that the forecasted temperature
in Tonga on the day of the eruption was 298 K
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8 Conclusion

In light of the previous results, an explanation for the extraordinary height of
the HTHH plume can be given. In general, the eventual maximal plume height
is dependent on the equilibrium height of the plume and its inertial velocity
when going through this point, but only if the buoyancy conditions are met.
The equilibrium height is almost exclusively defined by the properties of the
ambient air and not much by the initial properties of the plume itself. The
inertia of the plume when traversing the equilibrium point is dependent on the
initial properties of the plume, the initial velocities and temperature have a
relatively minor effect within the expected ranges of a volcanic eruption. The
initial plume radius on the other hand has a much larger effect. Since the radius
can differ by several orders of magnitude depending on the vent‘s dimensions or
a potential caldera collapse, the inertia can differ drastically. This explains the
apparent correlation between plume height and mass eruption rate discussed in
previous work [9]. The last factor to be considered is the previously mentioned
buoyancy conditions. Plumes with high initial vent radii tend to collapse more
often than smaller plumes, they require a much higher water vapor concentration
to become buoyant.

Comparing these general results with the HTHH observations, its eventual
height can be explained. The forecasted ground temperature of 298 K together
with the entire temperature profile were ideal for a maximally large plume as
given in Figure 5. Due to the collapse of the caldera an exceptionally broad
plume was formed that allowed the plume to reach equilibrium altitude with a
high enough velocity and inertia to reach its eventual height. And lastly, these
conditions didn‘t result in a plume collapse, which would normally be expected,
due to the added water vapor from HTHH‘s submarine nature. Hence the
conditions were ideal for a high plume to be formed. Using the expected values
for the HTHH parameters gives the velocity profile seen in Figure 7, with a
maximum altitude of 58 km. Several quantities related to the plume dynamics
can be extracted from the velocity. For example by integrating the inverse
velocity over the height, the total time it takes for the first particles to reach
the top can be determined by using the programme shown in appendix X. For
the profile from Figure 7, the expected time would be about 4 minutes. For
less climactic eruptions without caldera collapse, it tends to take closer to 10
minutes.
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Figure 7: Velocity profile for the HTHH eruption. Initial conditions of u0 = 150
ms-1, b0 = 1500 m, T0 = 1000 K, n0 = 0.2 and q0 = 0.2 were used, in light
of the expected values for HTHH. The equilibrium height comes out at 35 km,
and the maximum height at 58km.

To use the model to potentially predict the dynamics of other plumes some
amendments would need to be made in future research. For example, the effect
from strong winds should be included as they are shown to have an effect on
plume height [3][13]. Due to the tropic nature of the Tonga region, a moist
atmosphere approximation can be made, this might not always be the case.
The easiest solution would be to multiply the water vapor mass fraction by a
constant between 0 and 1, as discussed by Woods [14]. The general use of the
model should stay the same: the model can use weather forecasts to determine
the likely equilibrium height for a potential eruption of an active volcano. The
likelihood of collapse or buoyancy can be determined through the size of the
vent or caldera in case it collapses. The hardest parameters to determine would
be the vapor concentration and the probability of caldera collapse, but it should
be possible to make reasonable estimations.
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9 Appendix A. List of constants with justifica-
tions

• g = 9.81 m s-2: gravitational acceleration, assumed to be at a constant
global average as horizontal or vertical differences will be minor compared
to other errors.

• Rv = 462 J kg-1 K-1: gas constant for vapor [14]

• Ra = 462 J kg-1 K-1: gas constant for air [14]

• A = 2.53108 kg m-1 s-2 and B = 5.42103 K: empirically determined values
for the constants in the saturation vapor pressure equation [14]

• S = 2.26106 J kg-1: latent heat of vaporization of water at 273 K, assumed
to be constant [7]

• Cpv = 1400 J K-1: specific heat of vapour [14]

• Cpw = 4170 J K-1: specific heat of liquid water [14]

• cvs = 1617 J K-1: typical heat capacity of solids in the volcanic explosion
[11]

• cvg = 1155 J K-1: typical heat capacity for the gasses in a volcanic plume.
Expected to differ due to the extra water vapor but not included as it
doesn‘t affect the results significantly [11]

• ρs = 1700 kg m-3 : a typical density value for volcanic solid. [2]

• ϵ: entrainment coefficient ( 0.1 for buoyant and 0.06-0.07 for jets), taken
as a constant 0.09 in the calculations [4]
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10 Appendix B. Code used for the general model

{

"cells": [

{

"cell_type": "code",

"execution_count": 3,

"id": "9c2e4340",

"metadata": {},

"outputs": [],

"source": [

"### libraries being used for modelling and subsequent analysis ###\n",

"\n",

"import numpy as np\n",

"from scipy.integrate import solve_ivp\n",

"from scipy.optimize import fsolve\n",

"from scipy.linalg import solve\n",

"from matplotlib import pyplot as plt\n",

"import scipy.integrate as integrate\n",

"import math"

]

},

{

"cell_type": "code",

"execution_count": 4,

"id": "fb797731",

"metadata": {},

"outputs": [],

"source": [

"### List of constants used in the model ###\n",

"\n",

"\n",

"g = 9.81 #gravitational constant\n",

"Rv = 462 # massive gas constant for water vapout\n",

"Ra = 285 # massive gas constant for dry air\n",

"R = 1 # moist level of the atmosphere (0 dry and 1 is moist)\n",

"A = 2.53*10**8 # experimentally determined constand for the equilibrium pressure (es)\n",

"B = 5.42*10**3 # experimentally determined constand for the equilibrium pressure (es)\n",

"eps = 0.09 # entrainment coefficient\n",

"cvs = 1617 # heat capacity of solids in the plume\n",

"cvg = 1155 # heat capacity of liquids in the plume\n",

"Cpv = 1400 # heat capacity of water vapour\n",

"Cpw = 4170 # heat capacity of water\n",

"Ls = 0.0012 #temperature lapse rate in stratosphere\n",

"Lm = 0.00247 # temperature lapse rate in mesosphere\n",

"T0=298 # initial air temperature at ground level\n",
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"p0=101325 # initial pressure at ground level\n",

"rhos=1700 # density of pyroclasts\n",

"S = 2260000 # latent heat of vapourisation at 273K\n",

"\n",

"### Temperature lapse rates at different marks for air pressure, determined from meteoroligcal data in Tonga at the day of the eruption ###\n",

"\n",

"\n",

"Pa = [100000,92500,85000,75000,70000,65000,60000,55000,50000,45000,40000,35000,30000,25000,20000,15000,10000,7000,5000,1000]\n",

"L = [1, 0.0005466666666666697, 0.00045333333333333033, 0.00055, 0.0004600000000000023, 0.0008399999999999976, 0.0007600000000000023, 0.0007399999999999977, 0.0008, 0.0008800000000000069, 0.0009600000000000022, 0.001319999999999993, 0.001960000000000002, 0.001819999999999999, 0.002619999999999999, 0.003040000000000003, 0.002380000000000001, -0.0012000000000000075, -0.0032999999999999974, -0.006725000000000001]"

]

},

{

"cell_type": "code",

"execution_count": 24,

"id": "49982383",

"metadata": {},

"outputs": [],

"source": [

"### Model to solve the differentiql equation ###\n",

"\n",

"### Solver requires a guess for initial derivatives, should not effect runtime but a good guess lowers computing time ###\n",

"derivs_guess = [-1,-1,100,-1,0.01, -10, -5,0.01, 1, -1, -1, 0.01, 0.01,0.01, 1, -1, -1]\n",

"\n",

"\n",

" \n",

"### Next the system is defined, variables used in differential equations are ###\n",

"### given as input for the function, whereas variables defined through constraints ###\n",

"### are seperately written as such ###\n",

"\n",

"def system(t, TarhoabunTPqqw): # necessary to write all differential variables as 1 string\n",

" Ta, rhoa, b, u, n, T, P, q, qw = TarhoabunTPqqw # string is unpact here\n",

" Cp = (1-n)*cvs + n*cvg\n",

" es = A*np.exp(-B/Ta)\n",

" w = es/(P-es)\n",

" qa = R*w\n",

" qv = n*w\n",

" Rga = w*Rv + (1-w)*Ra\n",

" rhog = P/(Rga*T)\n",

" rho = (n/rhog + (1-n)/rhos)**(-1)\n",

" \n",

" \n",

" ### all the equations need to be wriiten as differential equations ###\n",

" ### (including the constraints) and are given below ###\n",

" \n",

" \n",

" def derivatives(derivs):\n",
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" dTa, drhoa, db, du, dn, dT, dP, dq, dCp, des, dw, dqa, dqv, dqw, dRga, drhog, drho = derivs\n",

" if P > Pa[1]: # the rate of change of atmospheric pressure is dependent on the height/atmospheric pressure and is given by if statements\n",

" eq1 = L[1]*dP - dTa\n",

" if P > Pa[2] and P < Pa[1]:\n",

" eq1 = L[2]*dP - dTa\n",

" if P > Pa[3] and P < Pa[2]:\n",

" eq1 = L[3]*dP - dTa\n",

" if P > Pa[4] and P < Pa[3]:\n",

" eq1 = L[4]*dP - dTa\n",

" if P > Pa[5] and P < Pa[4]:\n",

" eq1 = L[5]*dP - dTa\n",

" if P > Pa[6] and P < Pa[5]:\n",

" eq1 = L[6]*dP - dTa\n",

" if P > Pa[7] and P < Pa[6]:\n",

" eq1 = L[7]*dP - dTa\n",

" if P > Pa[8] and P < Pa[7]:\n",

" eq1 = L[8]*dP - dTa\n",

" if P > Pa[9] and P < Pa[8]:\n",

" eq1 = L[9]*dP - dTa\n",

" if P > Pa[10] and P < Pa[9]:\n",

" eq1 = L[10]*dP - dTa\n",

" if P > Pa[11] and P < Pa[10]:\n",

" eq1 = L[11]*dP - dTa\n",

" if P > Pa[12] and P < Pa[11]:\n",

" eq1 = L[12]*dP - dTa\n",

" if P > Pa[13] and P < Pa[12]:\n",

" eq1 = L[13]*dP - dTa\n",

" if P > Pa[14] and P < Pa[13]:\n",

" eq1 = L[14]*dP - dTa\n",

" if P > Pa[15] and P < Pa[14]:\n",

" eq1 = L[15]*dP - dTa\n",

" if P > Pa[16] and P < Pa[15]:\n",

" eq1 = L[16]*dP - dTa\n",

" if P > Pa[17] and P < Pa[16]:\n",

" eq1 = L[17]*dP - dTa\n",

" if P > Pa[18] and P < Pa[17]:\n",

" eq1 = L[18]*dP - dTa\n",

" if P > Pa[19] and P < Pa[18]:\n",

" eq1 = L[19]*dP - dTa\n",

"\n",

" elif P < Pa[19] and t < 50000:\n",

" eq1 = Ls - dTa\n",

" if t > 50000:\n",

" eq1 = -Lm - dTa\n",

" eq2 = dP/(Ra*Ta) - P*dTa/(Ra*Ta*Ta) - drhoa # ideal gas law to find atmosphere density\n",

" eq3 = eps*rhoa/rho - drho*b/(2*rho) - du*b/(2*u) - db # conservation of mass\n",
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" eq4 = 9.81*(rhoa - rho)/(2*u*rho) - drho*u/(2*rho) - u*db/b - du # conservation of momentum\n",

" eq5 = (1-n-qw)*(drho/rho + du/u + 2*db/b) - dqw - dn # conservation of solids\n",

" eq6 = 2*eps*rhoa*(g*t/Cp +Ta)/(b*rho) - (S+(Cpv-Cpw)*(T-273))/(Cp*rho)*(du*rhoa*qv+2*db*rhoa*qv/b+drhoa*qv+rhoa*dqv) - u*du/Cp - g/Cp - dCp*T/Cp - (u*u/(2*Cp) + g*t/Cp + T)*(du/u+2*db/b+drho/rho) - dT # conservation of energy\n",

" eq7 = -g*P/(Rga*Ta) - dP # hydrostatic balance for atmosphere pressure\n",

" eq8 = 2*eps*qa*rhoa/rho - q*drho/rho - 2*q*db/b - q*du/u - dq # conservation of water content\n",

" eq9 = dn*cvg -dn*cvs - dCp #heat capacity (constraint 1)\n",

" eq10 = es*B*dTa/(Ta**2) - des #aturation pressure (constraint 2)\n",

" eq11 = des/(P-es)-es*(dP-des)/(P-es)**2 -dw #constraint 3\n",

" eq12 = R*dw - dqa #(constraint 4)\n",

" eq13 = dn*w + dw*n - dqw #(constraint 5)\n",

" eq14 = dq-dqv-dqw #rate of change of vapor must be opposite of rate of change of liquid water\n",

" eq15 = dw*Rv - dw*Ra - dRga #(constraint 6)\n",

" eq16 = dP/(Rga*T) - P*dT/(Rga*T*T) - drhog #(constraint 7)\n",

" eq17 = (dn/rhos + n*drhog/(rhog**2) - dn/rhog)*(n/rhog + (1-n)/rhos)**(-2) -drho #(constraint 8)\n",

" return [eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9, eq10, eq11, eq12, eq13, eq14, eq15, eq16, eq17]\n",

" \n",

" global derivs_guess\n",

" \n",

" \n",

" ### Loops to ensure the solver does it work. All variables need to be considered but only the differential ###\n",

" ### variables are returned as the constraints can be retrieved later ###\n",

" \n",

" derivs = fsolve(derivatives, x0=derivs_guess)\n",

" derivs_guess = derivs\n",

" dTa, drhoa, db, du, dn, dT, dP, dq, dCp, des, dw, dqa, dqv, dqw, dRga, drhog, drho = derivs\n",

" return [dTa, drhoa, db, du, dn, dT, dP, dq, dqw] # dont return the constraint variables, they are calculated later\n",

"\n",

"\n",

"\n",

"### The solver solve_ivp is used to solve the system, the method requires an input of inital conditions ###\n",

"### for the differential variables (as the constraint initial conditions can be calculated from them) ###\n",

" \n",

"solution = solve_ivp(system, t_span=[0,90000], y0=[298, 1.225, 1500, 150, 0.2, 1000, 101325, 0.2, 0], method=\"Radau\")\n",

"\n",

" \n",

"### Finally assign the solutions of the solver to the relevant parameters and redefine the constraints ###\n",

"\n",

"t = solution.t\n",

"Ta,rhoa, b, u, n, T, P, q, qw = solution.y\n",

"Cp = (1-n)*cvs + n*cvg\n",

"es = A*np.exp(-B/Ta)\n",

"w = es/(P-es)\n",

"qa = R*w\n",

"qv = n*w\n",

"Rga = w*Rv + (1-w)*Ra\n",

"rhog = P/(Rga*T)\n",
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"rho = (n/rhog + (1-n)/rhos)**(-1)\n",

"\n",

"\n",

"### These solutions can be plotted against each other or the height (t) itself to study the result. ###"

]

}

],

"metadata": {

"kernelspec": {

"display_name": "Python 3 (ipykernel)",

"language": "python",

"name": "python3"

},

"language_info": {

"codemirror_mode": {

"name": "ipython",

"version": 3

},

"file_extension": ".py",

"mimetype": "text/x-python",

"name": "python",

"nbconvert_exporter": "python",

"pygments_lexer": "ipython3",

"version": "3.10.12"

}

},

"nbformat": 4,

"nbformat_minor": 5

}

11 Appendix C. Code to find it takes for the
plume to rise

{

"cells": [

{

"cell_type": "code",

"execution_count": null,

"id": "7b05e5fd",

"metadata": {},

"outputs": [],

"source": [

"### code to find the total time taken for the first particles to reach the top of the plume ###\n",

"### the veolcity array from the solver is integrated using a simple trapzium summation ###\n",
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"### against the travelled distanc to find time ###\n",

"\n",

"\n",

"time = 0\n",

"y = np.reciprocal(u)\n",

"for i in range(0, len(t)-1):\n",

" time += (y[i]+ y[i+1])*(t[i+1]-t[i])/2\n",

"print(time)"

]

}

],

"metadata": {

"kernelspec": {

"display_name": "Python 3 (ipykernel)",

"language": "python",

"name": "python3"

},

"language_info": {

"codemirror_mode": {

"name": "ipython",

"version": 3

},

"file_extension": ".py",

"mimetype": "text/x-python",

"name": "python",

"nbconvert_exporter": "python",

"pygments_lexer": "ipython3",

"version": "3.10.12"

}

},

"nbformat": 4,

"nbformat_minor": 5

}

12 Appendix D. Code to find the constraints on
water distribution

{

"cells": [

{

"cell_type": "code",

"execution_count": 1,

"id": "88cf087b",

"metadata": {},
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"outputs": [],

"source": [

"### required libraries for the calculations and subsequent analysis ###\n",

"\n",

"import numpy as np\n",

"import matplotlib.pyplot as plt\n",

"import math"

]

},

{

"cell_type": "code",

"execution_count": 2,

"id": "c6f37264",

"metadata": {},

"outputs": [],

"source": [

"### Solution of the system of equations given at the end of section 5. ###\n",

"### Eventual arrays are used in Figure 4 to find the constraints on the distribution ###\n",

"\n",

"seaperc = np.linspace(0, 1, 100)\n",

"ventperc = np.linspace(0, 1, 100)\n",

"airperc = np.linspace(0, 1, 100)\n",

"s_perc = []\n",

"v_perc = []\n",

"a_perc = []\n",

"for z in airperc:\n",

" for y in ventperc:\n",

" for x in seaperc:\n",

" if math.isclose(x + y + z, 1) and math.isclose(155.76*x + 264.792*y + 77.88*z,124.608):\n",

" s_perc.append(x)\n",

" v_perc.append(y)\n",

" a_perc.append(z)"

]

}

],

"metadata": {

"kernelspec": {

"display_name": "Python 3 (ipykernel)",

"language": "python",

"name": "python3"

},

"language_info": {

"codemirror_mode": {

"name": "ipython",

"version": 3

},
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"file_extension": ".py",

"mimetype": "text/x-python",

"name": "python",

"nbconvert_exporter": "python",

"pygments_lexer": "ipython3",

"version": "3.10.12"

}

},

"nbformat": 4,

"nbformat_minor": 5

}
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