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Abstract

This project aimed to investigate whether the near-real-time detection of volcanic clouds with
the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite platforms could be
improved with the creation of more representative covariance matrices. Fast linear retrievals are

used to identify elevated levels of sulfur dioxide (SO2) and volcanic ash in infrared spectra measured
by satellite instruments. This technique avoids slow and computationally intensive calculations by
using total error covariance matrices to represent the background spectral variability caused by
clouds, surface and atmospheric temperatures, instrument noise and the presence of interfering
species like water vapour and carbon dioxide in the atmosphere. Currently, the SO2 retrievals
developed by the Earth Observation Data Group at the University of Oxford, use covariance

matrices constructed from ensemble spectra from over Europe and the North Atlantic, potentially
introducing systematic errors in regions with different climatologies. This project aimed to assess

whether more representative covariance matrices tailored to particular land surface types and cloud
cover, could improve the accuracy with which SO2 is detected.

In total 20 covariance matrices were constructed. Analysis found significant variation between the
different covariance matrices. The main cause of this variation was suggested to be cloud cover,

with smaller contributions from the latitude bands and climate types used to divide the ocean and
land surfaces respectively. Some of the covariance matrices were tested within the Oxford linear
SO2 retrieval for the 2021 La Soufrière eruption, with results illustrated as scatter plots. The v1
SO2 absorption band retrievals were more affected by the total error covariance matrix used than
the v3 SO2 absorption band retrievals. In particular, there was a distinct difference in the number
and location of pixels flagged as containing SO2 in the v3 absorption band retrieval when different
covariance matrices were used. Retrievals using covariance matrices constructed from ensemble
spectra over the ocean appeared to give more false positives over land, whilst retrievals using
covariance matrices constructed from ensemble spectra over the ocean tended to have reduced

sensitivity to lower SO2 column amounts. There were also some small differences between the SO2

column amounts calculated using different covariance matrices. Future work should investigate the
response of retrievals using different parts of the infrared spectra, and assess various eruption scenes
to determine if there are certain conditions under which more representative covariance matrices

may significantly improve retrieval accuracy.
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1 Introduction and Background

1.1 Why monitor volcanic clouds?

Volcanic eruptions are geological hazards with the potential to have a range of local and global impacts on
people and the environment. Emissions of volcanic gases and ash during eruptions can pose an immediate
threat to population health and infrastructure [1], whilst potentially also leading to climatic cooling in
the longer term [2]. Short-term impacts include the destruction of crops, land and water contamination
and respiratory and cardiovascular human morbidity [1].

Volcanic gases contain aerosol precursors such as sulfur dioxide (SO2). SO2 is a precursor of sulfate
aerosols such as sulfuric acid (H2SO4), which is formed via the atmospheric oxidation of SO2 in either
the gas or aqueous phases citet. Sulfate aerosols can both scatter incoming short-wavelength solar ra-
diation and absorb outgoing long-wavelength infra-red (IR) radiation, with the balance between these
effects determined by the size of the aerosol particle [1]. Aerosols can also impact radiative forcing by
altering both the amount of cloud and the micro-physical properties of clouds [1]. Aerosols act as cloud
condensation nuclei (CCN) upon which water droplets may form. A greater amount of aerosols will result
in more CCN and an increased total cloud surface area, increasing the light-scattering efficiency of the
cloud. This also impacts Earth’s hydrological cycle [3].

SO2 has a greater potential to result in cooling when injected into the stratosphere, where the lim-
ited potential for deposition means that sulfate aerosol particles have a longer lifetime. SO2 is removed
more quickly from the troposphere via chemical reactions and dry and wet deposition [1]. During the
1991 eruption of Mt. Pinatubo, 18 Tg of SO2 were released into the stratosphere [4], leading to the
production of around 30 Tg of sulphate aerosols, which subsequently caused sufficient back-scattering
of solar radiation to increase the Earth’s albedo and cause global mean air temperatures to reduce by
0.5oC [2]. Volcanic ash can also affect radiative forcing, but these effects tend to be local due to the
short atmospheric lifetime of volcanic ash [5].

In the immediate aftermath of a volcanic eruption, one of the industries at risk is aviation. Volcanic
ash, containing sharp fragments of rock, mineral particles and volcanic glass, can not only result in
reduced visibility and navigation systems failure but can also cause decreased engine performance [6].
Ash particles entering turbine engines melt due to the extremely high temperatures in the combustion
chamber, before re-solidifying and accumulating in other parts of the engine, obstructing fuel and cooling
systems and leading to a decrease in engine performance or failure [6]. Additionally, H2SO4 can damage
both the exteriors of aircraft and the interiors of aircraft engines via corrosion [7]. Aircraft vulnerability
to volcanic ash and gases was demonstrated by the closures of European airspace following the 2010
Eyjafjallajökull eruption in Iceland. Airspace closures and the subsequent cancellations of over 100, 000
flights caused economic losses of USD 1.7 billion [8].

1.2 Using satellite instruments to monitor volcanic clouds

Real-time monitoring of volcanic clouds is subsequently significant in alerting the aviation industry of
volcanic hazards, facilitating timely warnings and the rerouting of flights to minimise risk to aircraft and
passengers [8]. It is also important to estimate the total emission of SO2 which can be used within
climate models to provide a first estimate of any climate impacts. Near Real-time (NRT) monitoring can
be achieved through the use of satellite observations [8]. Satellite-based monitoring systems have the
advantage of facilitating global coverage, in contrast to ground-based monitoring, which can also be dan-
gerous, expensive, and logistically challenging. Satellite instruments commonly use the UV and infrared
regions of the electromagnetic spectrum for monitoring volcanic emissions, with infrared instruments
being particularly useful because of their ability to operate at night and during high-latitude winters [9].

Despite comprising just 5% of total volcanic gas emissions [1], SO2 is one of the most commonly mea-
sured gases as it has a very low background abundance, aside from a small number of anthropogenic
point sources such as metal smelters and power plants [1]. This means that SO2 is significantly easier to
measure than volcanic emissions of species such as water vapour and carbon dioxide which, whilst being
emitted in larger amounts during eruptions, are minor contributions relative to atmospheric background
levels [10]. Additionally, the lifetime of SO2 is long enough to enable detection but short enough to
prevent significant atmospheric accumulation, which would interfere with the measurement of emission
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events. SO2 has distinct spectral signatures in both the UV and infrared regions of the electromagnetic
(EM) spectrum. In the infrared these spectral signatures occur as three absorption bands illustrated in
Figure 1 below: the ν1, ν3 and ν1+ν3 bands [1].

Figure 1: SO2 IR spectra with the ν1, ν3 and ν1+ν3 absorption bands annotated. Spectral data is sourced
from the National Institute of Standards and Technology (NIST) Atomic Spectra Database [11]

As can be seen in Figure 1, the anti-symmetric stretch ν3 band at 7.3 µm (1362 cm−1) is the strongest
absorption feature. However, this feature is located within a region of strong water vapour absorption
(see Figure 2) resulting in reduced sensitivity to SO2 in this band in regions of the atmosphere with large
quantities of water vapour (e.g. the Earth’s boundary layer) [9]. The symmetric ν1 band at 8.7 µm (1152
cm−1), whilst being a smaller feature, is located in an atmospheric window, though it can be affected by
the presence of both volcanic ash and sulfate aerosols. The final band, the combination ν1+ν3 band at
4 µm (2500 cm−1), is the weakest feature and can be affected by reflected solar radiation. Consequently,
this band tends to be used only when other channels are saturated by exceptionally large quantities of
SO2 [12].

Successfully flagging pixels which contain elevated amounts of SO2 requires the separation of the SO2

signal from the signals of unwanted parameters that may affect the spectral background such as interfer-
ing species like water vapour; cloud; and atmospheric and surface temperature. This is achieved using a
fast linear retrieval (outlined in section 2.2), a method developed by Walker et al. [13] for the Infrared
Atmospheric Sounding Interferometer (IASI; described in further detail in section 2.1). This method
utilises a total error covariance matrix formed from an ensemble of SO2-free pixels. Covariance is a sta-
tistical measure of how two variables change together, with the total error covariance matrix containing
information about the relationship between the different spectral channels of the IASI instrument. The
total error covariance matrix represents the spectral variability due to the unwanted parameters, which
consequently do not have to be retrieved themselves. Instead, the effects of these variables are approxi-
mated as noise. This means that the spectra of pixels which do contain SO2 can be quickly distinguished,
with the linear retrieval returning an effective SO2 column amount. This enables the scanning of large
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data sets in near real-time; this has important applications in hazard assessments, and can also be used
to filter for significant volcanic events to be analysed further.

Ideally, the covariance matrix used in a retrieval process should be calculated from an ensemble of
SO2-free spectra from the same geographic location and in the same meteorological cloud conditions.
This is because much of the spectral variability observed by IASI in different regions is due to variations
in IR long-wave Planck emission by different surface types and temperatures. For example, a desert
region has very different emission spectra than an ice sheet. The level of cloud cover also plays a key
role, as the presence of opaque clouds may prevent some of the spectral features associated with surface
characteristics from being observed in the spectra obtained by IASI. In practice, a general covariance
matrix has been used. The general covariance matrix used in the Walker method was formed from pixels
over the North Atlantic and Europe [13], [9]. However, its use may produce systematic errors in regions
with significantly different climatologies. This study aims to assess whether using a more specialised
covariance matrix based on a specific land surface type and cloud cover at a certain time of year could
improve the accuracy with which the Fast Linear Retrieval calculates the effective SO2 column amounts.
Were this to be the case, an eventual aim would be to construct several different covariance matrices
which represent different conditions to use during different times of the year and in different geographical
regions.

2 Methodology

2.1 The Infrared Atmospheric Sounding Interferometer (IASI)

The spectral data used in this project is from IASI [14], a hyper-spectral cross-nadir Fourier Transform
interferometer on board the polar-orbiting MetOp A, B and C satellites launched in 2006, 2012 and
2018 respectively. Fourier transform IR spectrometers are based on Michelson interferometers, which
split collimated infrared radiation into two beams, reflecting each beam by a mirror before recombining
them. One mirror is moved backwards and forwards along the optical axis, creating a path difference
and leading to the production of a time-varying signal when the beams recombine. IASI passively detects
the reduction in the radiance of the Earth’s Planck emission due to atmospheric absorption by molecular
vibration bands. As a hyper-spectral interferometer, IASI can detect absorptions by minor absorbing
molecules including ammonia and chlorofluorocarbon (CFCs), as well as major absorbers such as water
vapour and carbon dioxide, providing more detailed spectra than previous infrared sounders such as the
Atmospheric Infrared Sounder (AIRS). The Level 0 (raw data) can be transformed into calibrated ab-
sorption spectra by applying an inverse Fourier transform from the time domain to the frequency domain
[1]. This is Level 1 IASI data. Retrieval techniques can be executed to provide Level 2 data such as SO2

column amounts.

Infrared instruments like IASI utilise the Planck radiation emitted by the Earth, the spectrum of which is
affected by absorption and interaction due to certain gases in the atmosphere. The wavelength-dependent
absorption of infrared radiation by volcanic ash and sulfate aerosols produces a negative difference in
brightness temperature [8]. This temperature difference is opposite in sign to that caused by most
other meteorological clouds. SO2 has distinct spectral signatures in the UV and infrared regions of the
EM spectrum. Each IASI instrument provides near-global coverage twice a day and has nadir viewing
geometry with a resolution of 12.3 km [14], providing continuous coverage in the thermal infrared from
wavenumbers of 645-2760 cm−1 sampled at a resolution of 0.25 cm−1 [14]. This supplies 8461 spectral
channels; this large number of channels can be utilised in advanced retrieval techniques. Whilst IASI’s
predominant purpose was to provide meteorological information, since data became available in 2007
IASI has also been utilised to measure atmospheric composition, facilitating the monitoring of events like
volcanic eruptions, wildfires, dust storms and pollution, all of which can impact atmospheric composition
and the spectra observed by IASI.

The IASI spectra can be displayed in units of brightness temperatures (K). The range of channels used in
this study is 700 to 1400 cm−1. This range was chosen to include the absorption features of both SO2 and
volcanic ash and encompasses two atmospheric windows between bands of water vapour absorption. The
presence of atmospheric windows enables the sensing of surface properties and trace species. An example
spectra is shown below in Figure 2, with the key absorption bands illustrated. Using this large spectral
range allows the covariance to be adapted for the retrieval of column amounts of multiple species. As can
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Figure 2: An example IASI spectrum in brightness temperature between wavenumbers of 700 cm−1

and 1500 cm−1 in clear-sky conditions over the mid-latitude ocean. The main absorption bands and
atmospheric windows are illustrated; the SO2 ν1 and ν3 absorption bands are shown by vertical lines blue
and red lines respectively. The positions of the SO2 absorption features were obtained from [15]. The
IASI spectral data was made available by EUMETSAT.

be seen in Figure 2, the ν1 band is located in an atmospheric window whilst the stronger v3 band is close
to the water vapour absorption band and is also collocated with the methane absorption band. IASI can
also be used to detect the presence of ash, with the relevant wavenumber regions shown in Figure 3.

Figure 3: The same example IASI spectra with the ash absorption feature illustrated, shown by vertical
grey lines. The wavenumbers of the ash absorption features were taken from Clarisse et al. (2010a; [16]).
The IASI spectral data was made available by EUMETSAT.
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The ash band is a wider v-shaped absorption feature spanning regions of ozone absorption as well as
two atmospheric windows [16].

2.2 The Fast Linear Retrieval Method (Walker et al 2011)

Fast linear retrievals are much more efficient at scanning large data sets than computationally intensive,
slow and inefficient fully quantitative retrievals requiring radiative transfer calculations. The fast linear
retrieval method was designed to take advantage of IASI’s large number of channels and high spectral res-
olution to provide a Near Real Time (NRT) indication of elevated SO2 signals in the atmosphere, assisting
in determining whether a full iterative retrieval is needed for those pixels [13]. In a given wavenumber
channel, changes in the spectral background due to unwanted parameters including interfering species,
surface temperature, atmospheric temperature and cloudiness can overwhelm the spectral signal of the
target species, in this case SO2. The Fast Linear Retrieval Method method aims to avoid the direct
retrieval of these unwanted parameters.

In the linear retrieval, the spectral measurements made by IASI, y, are represented by a forward model
F and the sum of the random and systematic measurement error:

y = F (x,u) + ξrnd + ξsys (1)

Where the forward model is a function of the true state vector x and u. u is the best estimate of other pa-
rameters related to the instrument, atmosphere and the Earth’s surface that affect the spectra observed
by IASI. x is constituted of the SO2 column amount xc and the wavenumber-independent brightness
temperature offset, off . The spectral offset describes uncertainty in u corresponding to the spectral
contributions caused by any differences between the actual and modelled Earth surface temperature, the
presence of volcanic ash and the cloudiness of the atmosphere. The random measurement error ξrnd is the
error due to instrument noise. Instrument noise is caused by random variations in the spectra unrelated
to atmospheric parameters, and can be due to various effects including electronic and thermal phenomena
within the instrument itself. The systematic error ξsys is due to uncertainties in u caused by uncertainties
in the forward model. The forward model used is the Reference Forward Model (RFM), a line-by-line
radiative transfer model that can calculate transmittance through the atmosphere given atmospheric gas
profiles[17]. The uncertainties are due to mismatches between the forward model parameters that have
been assumed and atmospheric variability in temperature, pressure and composition [17]. In general, the
systematic errors are spectrally correlated.

F is linearised about a reference state, the linearisation point, with ambient levels of SO2 and the best
estimate of u.

F (x,u) ≈ F (x0,u) +K(x− x0) (2)

The Jacobian K is the matrix of the partial derivatives of F with respect to x, evaluated at x0. This
linearised function can be substituted into Equation (1).

y ≈ F (x0,u) +K(x− x0) + ξrnd + ξsys (3)

Next, the total error can be defined as the difference between the spectra observed by IASI (y), and the
spectra simulated by the RFM for ambient levels of SO2.

error = y − F (x0,u) (4)

From Equations 3 and 4, it can be seen that the total error is given by the following expression.

error ≈ K(x− x0) + ξrnd + ξsys (5)

To make an optimal unconstrained least-squares estimate x̂ = [x̂c, ˆoff ]T of the true state vector x, a
gain matrix G is used to minimise the error.

x̂ = x0 +G ∗ error (6)

The gain matrix or measurement contribution function G represents the weights allocated to a given
spectrum in determining the existence of SO2. The error term from Equation 4 can then be substituted
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into Equation 6 to give an expression for the estimate x̂ of the true state vector x, in this case the column
amount of SO2.

x̂ = x0 +G(y − F (x0,u)) (7)

Equation 7 shows that the optimal unconstrained least-squares estimate of the column amount of SO2

is given by the sum of the ambient levels of SO2 and the measurement contribution function multiplied
by the difference between the spectral measurement y and the results of the forward model F at the
linearisation point. The gain matrix G is a function of the inverse of the total measurement error
covariance matrix, Stot

ξ , the covariance of the sum ξrnd + ξsys, and the Jacobian K.

G = (KTSξ
tot−1

K)−1KTStot−1

ξ (8)

The diagonal elements of Stot
ξ contain the total random and systematic variance and weight the spectral

points against each other, giving less weight to points with a larger total error. The Jacobian K represents
the sensitivity of IASI to changes in atmospheric parameters and links the measured spectra to changes
in atmospheric temperature and concentrations of trace gases. The RFM is used to simulate atmospheric
spectra and produce K, with the ith row of the Jacobian calculated using the partial derivative of the
ith simulated spectra in units of brightness temperature with respect to the SO2 column amount. The
derivatives are calculated numerically by applying a perturbation to SO2 column amounts in the RFM
[17] and quantify how changes in SO2 column amount affect the measured infrared spectra [13].

For the Fast Linear Retrieval to be successful, the total measurement error covariance matrix, which
provides information on possible spectral inter-correlation, needs to be as realistic as possible. Stot

ξ can
be calculated in two ways, either using perturbation theory in combination with the forward model or
via a large ensemble of spectra with ambient levels of SO2 that are representative of the atmospheric
conditions in which the detection is applied. The latter method is used in this investigation. The en-
semble method is suitable for volcanic SO2 as, in the absence of any volcanic events, the signal from
SO2 is substantially below the noise. This is significant as spectra containing enhanced levels of SO2

mistakenly included in the ensemble can reduce the sensitivity of SO2 detection. While not investigated
in this project, future studies could exclude regions around persistent sources of SO2 in an attempt to
minimise their contribution to the covariance matrix.

2.2.1 Calculating a Covariance Matrix

An ensemble of N measurement spectra are used, with measurements in a range of channels. This range
should include areas of the infrared spectrum with both strong and minimal contributions from SO2 to
maximise contrast with the spectral background. Correlations in Stot

ξ mean that all channels used add
useful information to the matrix. The number of channels used will be denoted as nc.
The mean spectrum in each channel ȳ should be calculated and stored as an array with dimensions (1,nc).

ȳ =
1

N

N∑
i=1

yi (9)

The total error covariance matrix can then be calculated using:

Stot
ξ ≈ 1

N − 1

N∑
i=1

(yi − ȳ)((yi − ȳ)T (10)

In practice, the most efficient way to calculate this was found to be utilising the method outlined in
Smith (2012 [18]) to find the covariance S of N measurement vectors stored in an array Y [18]. N is the
number of pixels. Smith’s equations use the matrices with dimensions that are the transposes of those
used in this investigation and so the equations have been adapted accordingly.

Stot
ξ =

1

N − 1
(YTY −N ȳT ȳ) (11)

YTY is the mean square matrix and is calculated by taking the matrix multiplication of the transposed
spectral matrix and the spectral matrix. In matrix multiplication, each element ij in the resulting matrix
is the dot product of the row i in the first matrix and the column j in the second. The spectral matrix and
transposed spectral matrix have dimensions (N, nc) and (nc, N) respectively. The mean square matrix
has dimensions (nc, nc), as an m x n matrix multiplied by an n x k matrix will give an m x k matrix.
ȳT ȳ is equal to the outer product of ȳȳ and has dimensions (nc, nc). Consequently S = Stot

ξ will also
have dimensions (nc, nc) as expected.
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2.2.2 Removing pixels containing SO2

As the covariance matrices must be constructed from SO2 free pixels, the corresponding linear retrieval
data was loaded and used to remove SO2 flagged pixels from the construction of the covariance matrices.
The linear retrieval data were previously generated using the fast linear retrieval method [13]. The
present version of this retrieval uses the ν3 absorption band and so may not successfully remove pixels
which contain SO2 within regions where there is a large quantity of water vapour.

2.2.3 Parameters Investigated

Covariance matrices are calculated from SO2-free spectra for a number of conditions. Land cover is con-
sidered first, with the pixels divided into land and ocean. The ocean pixels are then classified into five
latitude bands: 60 to 90 oN; 30 to 60 oN; 30 oS to 30 oN; 30 to 60 oS and 60 to 90 oS. Meanwhile, the land
pixels are classified into five biomes based on climate classifications. Finally, cloud fraction is considered.
Any pixel with a cloud fraction of greater than 10% is considered to be cloudy, whilst any pixel with a
cloud fraction of less than 10% is considered cloud-free. This results in a total of 20 categories. The biome
classifications used are sourced from the June 2006 version of the Köppen-Geiger Climate Classification
[19]. The climate map has a spatial resolution of 0.5 degrees and is based on data sets from the University
of East Anglia Climate Research Unit and the Global Precipitation Climatology Centre at the German
Weather Service. The data used is representative of the 50-year period 1951-2000, with classes based
mainly on vegetation and surface type. Further subclasses based on precipitation and heat are available
but not used within the scope of this study. However, they could be used in the future to improve analysis.

The biome data did not have a regular grid due to containing only land coordinates and so a direct
comparison between IASI latitudes and longitudes and biome latitudes and longitudes could not be used
to find the closest biome to each IASI pixel. Initially, the distance between every IASI pixel and each
biome coordinate was calculated, with the IASI pixel being assigned the biome of the closest pixel. How-
ever, this method proved to be too computationally intensive within the timeframes of this study and
instead, the latitudes and longitude coordinates of each of the five biomes used were converted into Poly-
gons in Python. Figure 4 illustrates a plot of these Polygons.

Figure 4: A map of five biomes based on the Köppen-Geiger Climate Classification [19] and created from
polygons made using the shapely and geopandas libraries in Python.

Each IASI pixel was assigned to either a biome polygon or an ocean latitude category. The method
used had some limitations which should be investigated further: visual inspection showed that some IASI
pixels were not assigned to a biome, possibly due to boundary and precision issues. Polygon buffering of
0.05 degrees was used to reduce non-classifications by including pixels within 0.05 degrees of the biome
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boundaries, though this may lead to some loss of accuracy and false classifications due to overlapping
boundaries. In the future, land-surface emissivity climatologies derived directly from IASI data could be
used to provide more accurate surface-type and temperature classifications [20].

This investigation constructed covariance matrices from spectral data from 2020. All the IASI spec-
tral files from 2020 were used, with each pixel sorted into the 20 categories, and the mean square matrix,
number of pixels and mean spectrum were calculated and stored for each category for each file. The
mean square matrices, pixel numbers and mean spectra for each file were then combined into totals for
each category. The 20 covariance matrices, one for each category, were then calculated.

2.2.4 Constructing Gain Matrices and finding SO2 Column Amounts

When the ensemble method is used, the mean spectrum ȳ calculated in Equation 5 should be used in
place of the forward model term in Equation 2 as it is likely to be a more representative estimate of the
climatological mean spectrum. This means that equation 7 becomes:

x̂ = x0 +G(y − ȳ)) (12)

The gain matrix G is calculated using Equation 8.

Column amounts of SO2 are calculated in Dobson units (DU), a unit measuring the amount of a particu-
lar gas in a vertical atmospheric column. The magnitude of a gas in DU can be calculated from a column
amount given in molecules per cm2 using the equation below:

1DU = 2.69× 1016 molecules cm−2 (13)

The total column amounts x̂c of SO2 retrieved in the Walker method are not accurate retrievals of the
SO2 column amounts; rather they are used to establish whether levels of SO2 are enhanced with regards
to ambient atmospheric levels. If column amounts of SO2 at a certain pixel are above a threshold value,
those pixels are ’flagged’ as containing SO2 and a full quantitative retrieval may be used.

2.3 Applying the Representative Covariance Matrices to the Fast Linear Re-
trieval for the La Soufrière 2021 Eruption

La Soufrière volcano on the Caribbean Island of St. Vincent entered a phase of explosive eruptive activity
during April 2021, with multiple explosive events occurring from the 9th to the 22nd April during which
time significant ashfall affected much of St Vincent and many neighbouring islands [21]. A minimum
estimate of the total emission of SO2 to the atmosphere during this time period was calculated to be 0.63
± 0.5 Tg based on IASI measurements [7].

In this study, four of the covariance matrices created are used in both the ν3 and ν1 SO2 absorption
band fast linear retrievals to facilitate the comparison of the number of flagged pixels. The four covari-
ance matrices used are those calculated for the Cloud Free Ocean Latitudes -30 to 30◦, Cloudy Ocean
Latitudes -30 to 30◦, the Cloud Free Tropical Land Surface and the Cloudy Tropical Land Surface. Maps
of SO2 column amounts obtained during each retrieval are plotted. These categories of covariance ma-
trices were chosen to mirror the geographical location of the La Soufriére eruption and cloud.
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3 Results

3.1 Covariance Matrices

Mean square matrices, mean spectra, and total number of pixels were calculated for the 20 surface type
and cloud cover categories for a year (2020) of IASI data from all three instruments. This enabled the
calculation of 20 covariance matrices representative of the background spectral covariance of each cate-
gory. Figure 5 below illustrates 20 example covariance matrices calculated from 10 files in February 2020.

Figure 5: Covariance matrices for wavenumbers between 700 and 1400 cm−1 for each of the 20 land
surface type and cloud categories created using 10 IASI-a files from February 2020
L: Land O: Ocean C: Cloudy, CF: Cloud Free

The diagonal elements of the covariance matrices represent variances (the covariance between the same
wavenumber channel), whilst the off-diagonal elements represent covariance between different spectral
channels. Several features can be observed in these matrices. Firstly, for each matrix, regions of higher
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covariance are observed in channels corresponding to the atmospheric windows between the CO2 and O3

absorption bands (800 - 950 cm−1) and between the O3 and H2O absorption bands (1100 - 1400 cm−1).
In atmospheric window regions, the spectrum is dominated by the Planck emission from the Earth’s sur-
face. Variations in the Plank emission affect the whole spectrum, resulting in a higher covariance between
channels. In contrast, there are areas of lower covariance with other channels in the absorption bands.
In regions of absorption, the photons detected originate from the atmosphere itself. This is because of
the absorption and re-emittance of specific wavelengths of infrared radiation from the Earth by absorb-
ing molecules. For example, in the O3 absorption band, the photons detected will originate from the
stratosphere where there are high concentrations of long-wavelength absorbing ozone molecules, rather
than from the surface. This results in the central cross feature in each covariance matrix. Similarly, in
the water vapour absorption bands, where transmittance is minimal, the photons reaching IASI originate
from the point in the atmosphere at which the water molecules are located. This results in the reduced
covariance along the bottom and right of each matrix.

When comparing the matrices calculated for different categories, there is a noticeable difference in the
covariance between spectral channels for the cloudy and cloud-free matrices. Spectra of pixels classified
as ’cloudy’ are found to have higher covariances. As clouds tend to have a uniform effect over a range of
wavelengths, many spectral channels will exhibit similar features. For instance, clouds can cause strong
scattering in multiple spectral channels, leading to higher covariance between them. This effect is com-
pounded by the fact that when clouds are present in the atmosphere, the thermal emission detected in
multiple channels will be influenced by the same cloud properties, such as cloud top temperature and
composition, leading to a higher covariance between channels. The exception to this is the cloud-free
covariance matrix for the ice biome, which exhibits very high covariance between spectral channels. This
could be due to the different emissivity properties of ice compared to other surfaces. The cloud-free
ocean covariance matrices for 60 to 90oN and 60 to 90oS display similarly higher covariances than the
cloud-free ocean covariances at lower latitudes; this could also be due to the presence of sea ice.

Additionally, spectra over land regions tend to have higher covariance than spectra over ocean regions.
Land surfaces experience more significant diurnal temperature fluctuations, resulting in more complex
and variable infrared spectra, whilst the higher heat capacity of the ocean means that the spectra detected
above oceans tend to be more consistent.

3.1.1 How different are the covariance matrices for various land surface and cloud fraction
categories?

In order to ascertain whether the use of more representative covariance matrices can improve the detec-
tion of volcanic clouds, it is first necessary to investigate whether there are significant differences between
the covariance matrices constructed from pixels belonging to the various land surface and cloud fraction
categories. Initially, the means, minima and maxima of each covariance matrix were compared, with the
results displayed in Figures 6 and 7 below.

From a visual inspection of Figures 6 and 7, a significant variation in the covariance matrices can be
seen both between the land and ocean covariance matrices and within the different categories. For the
ocean covariance matrices, the mean covariances of the ‘cloudy’ matrices were greater than those of the
‘cloud-free’ matrices in each latitude band, with the differences greatest for the lower latitude bands. The
‘cloudy’ covariance matrices also had a greater spread than the ‘cloud-free’ covariance matrices. Again,
the lower latitude bands saw the greatest spread in covariance. Overall, there is a clear indication that
the lowest latitudes close to the equator see the greatest covariance in ‘cloud-free’ conditions, whilst the
highest latitudes close to the poles see the greatest covariance in ‘cloudy’ conditions.

Trends are slightly different for the land covariance matrices, with less distinct trends. Whilst the tem-
perate, arid and tropical surface types saw higher means and greater spread in their covariances matrices
for ‘cloudy’ conditions than ‘cloud-free’, the opposite is the case for the ice and continental surface types.
Overall, the mean and spread of the ‘cloud-free’ covariance matrices tend to be smaller for land surface
types that are, in general, located closer to the Equator. Trends in the mean and spread of the ‘cloudy’
covariance matrices are harder to identify, with perhaps slightly greater means and spread for the covari-
ance matrices constructed from pixels above land surface types generally located closer to the Equator,
such as the tropical, temperate and arid biomes.

12



Figure 6: Figure illustrating the mean, maximum and minimum statistics for cloudy and cloud-free
covariances for each of the ocean latitude bands

Figure 7: Figure illustrating the mean, maximum and minimum statistics for cloudy and cloud-free
covariances for each of the land surface types

For both ocean and land surface categories, cloud cover seems to play a greater role in influencing
the covariance matrices than either the latitude band or the land surface type. The exception would be
the ice surface type, which appears to have a greatly different covariance to the other land surface types
under ‘cloud-free’ conditions.

To analyse these differences quantitatively, the Frobenius norm was calculated for each of the 20 co-
variance matrices. The Frobenius norm is a square matrix norm which gives a scalar value; this scalar
can be used to compare and quantify the similarity of different covariance matrices. The Frobenius norm
of an m x n matrix is found by taking the square root of the sum of the absolute squares of the matrix

13



elements:

|| Stot
ξ ||F=

√√√√ m∑
i=1

n∑
j=1

| Sij |2 (14)

The Frobenius norm was calculated for each of the 20 covariance matrices produced for the year 2020. A
boxplot of the norms was then produced to quantitatively compare the norms of the different covariance
matrices and is shown in Figure 8 below.

Figure 8: Box Plot of the distribution of the Frobenius norms of the 20 covariance matrices displayed
above

The large IQR relative to the total range of Frobenius norms suggests high variability between the
covariance matrices for different categories. This analysis confirms that using spectra from the varying
land surface type and cloud fraction categories to construct covariance matrices can produce significantly
different results.

3.1.2 Investigating how much information we need to calculate representative covariance
matrices

In order to determine the maximum number of pixels needed to be added to the calculations to construct
a representative covariance matrix, the determinant of the covariance matrix was recalculated after each
file, contributing around 1-10,000 pixels, was added. However, this determinant was found to be very
small, roughly equal to 0. This indicates a degeneracy in the covariance matrix and suggests that invert-
ing the matrix may lead to large uncertainties in the retrieval.

Correlation matrices were then calculated from the covariance matrices to investigate this further us-
ing Equation 15 below.

Sij,cor =
Sij,cov√

Sii,covSjj,cov

(15)

These correlation matrices can be plotted.

As the covariance matrices are symmetric matrices, a property in which the matrix itself is equal to
its transpose, the diagonal elements of the correlation matrices are equal to 1. The correlation matrices
plotted in Figure 9 show a very high correlation. This was somewhat unexpected as the noise of the
instrument is thought to reduce this correlation to a higher degree.
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Figure 9: Correlation matrices for each of the 20 land surface type and cloud categories created using 10
IASI-A files from February 2020

To avoid the issue of the near-zero determinants, other information was used to determine the num-
ber of pixels required to construct a representative covariance matrix. As each new file was added to the
covariance matrix calculation, the difference between the new total error covariance matrix and the pre-
vious total error covariance matrix was calculated. The maximum and mean differences of this difference
matrix were plotted against the number of pixels used in the calculation. A logarithmic y-scale was used
to clearly show the levelling off of the mean and maximum differences, indicating that there was little
change in the total error covariance matrix with the further addition of new spectra.
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Figure 10: Mean and maximum differences between covariance matrices against number of pixels added
for a cloud-free covariance matrix for ocean regions between 30 to 60oN calculated using 1 month of
spectral data from February 2020

Figure 10 shows that with the addition of further pixels, the difference between the old total error
covariance matrix and the new, quantified by the mean and maximum of the difference matrix, decreases.
The initial decrease is rapid up to 20,000 pixels, after which the mean and maximum differences decrease
more slowly to close to zero, with minimal variation after 200, 000 pixels.

3.2 La Soufrière SO2 Column Amounts using the ν3 and ν1 SO2 Absorption
Band Fast Linear Retrievals

Four of the 20 covariance matrices calculated were used within the ν1 and ν3 fast linear retrievals, demon-
strating the utility of using a wider channel range when calculating the covariance matrices. Below, the
number and distribution of the flagged pixels for each retrieval are discussed and compared. It is impor-
tant to note that though some differences between results obtained using different covariance matrices
have been identified, there is limited scope to comment quantitatively as only four categories of covariance
matrices were tested for one scene.
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Covariance Matrix Number of Pixels Flagged as Containing Elevated Levels of SO2

Categories ν1 ν3
Cloud Free Ocean Latitudes -30 to 30 ◦ 450 1765
Cloudy Ocean Latitudes -30 to 30 ◦ 407 1713
Cloud Free Tropical Land Surface 487 1761
Cloudy Tropical Land Surface 301 1674

Table 1: A table recording the number of pixels flagged for the La Soufrière scene by the Fast Linear
Retrieval for two different absorption bands when using different covariance matrices

As illustrated in Table 1 above, the ν3 band is much more sensitive to SO2. The standard deviation for the
ν3 band results is 43.20 DU, almost half of the ν1 band standard deviation of 80.4 DU, indicating that the
use of more representative covariance matrices may have a significantly larger impact on retrievals using
the ν1 absorption band. This is reinforced by the maps of the SO2 column amounts plotted following
each retrieval, shown in Figures 11 and 12 below.

Figure 11: Maps showing the SO2 column amounts for four different ν3 band linear retrievals using
covariance matrices for those categories detailed in Table 1

The cloud-free and ocean ν3 band absorption band retrievals produce more scattering in Figure 11 above,
with the cloudy, tropical land surface retrieval producing the least (potentially) false flagging of pixels.
However, this does not mean that this retrieval produced the most accurate results as it may also have
missed some pixels which did contain SO2. The cloudy, ocean -30 to 30 ◦ gave the next least amount of
false flagging, again indicating that cloud cover perhaps plays a more significant role than surface type
in influencing the covariance matrices. Overall, however, the detections from the different retrievals are
quite similar. Though the other 16 covariance matrices should also be tested, these preliminary results
may suggest that for the ν3 band, using more representative covariance matrices does not make a signif-
icant difference to the results of the fast linear retrieval.
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Figure 12: Maps showing the SO2 column amounts for four different ν1 band linear retrievals using
covariance matrices for those categories detailed in Table

The use of different covariance matrices seems to have had a greater impact on the ν1 band retrievals.
Interestingly, the ocean covariance matrices gave a significant amount of potentially false flagging of pix-
els, particularly over land. This was most evident in the cloudy, ocean -30 to 30 ◦ retrieval, but was also
significant for the cloud-free ocean -30 to 30 ◦ retrieval. The tropical land surface retrievals produced
significantly less false positive flagging over land but also appeared to miss some pixels in the cloud
flagged by other retrievals, including the ν3 band retrievals, as containing SO2. The two land retrievals,
particularly that using a cloudy covariance matrix, appeared to only flag pixels with the very highest
column amounts of SO2, perhaps indicating reduced sensitivity of these land retrievals for volcanic clouds
over the ocean.

It is important to note that whilst running the linear retrieval it was found that some covariance matrices
threw errors due to null values recorded for the mean spectra and mean square matrices in some channels.
This suggests that there is an unidentified bug in the code which generates the covariance matrices.

4 Future Work

There is significant scope for future work pertaining to this study and related areas.

• The performance of the remaining 16 representative covariance matrices not as yet reviewed within
Section 3.2 of this report should be investigated and compared.

• A more in-depth investigation into how different parts of the infrared spectra, for instance, the
absorption bands of volcanic ash, respond to the use of more representative covariance matrices is
required to make conclusions on the significance of the impact of the use of these matrices in linear
retrievals.
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• An assessment of different eruption scenes to ascertain whether there are special cases in which using
a more representative covariance matrix makes more of a difference to the retrieval. For example,
in a desert with the presence of dust clouds or in icy locations where the covariance matrix has
been found to be particularly different to other locations.

• An exploration of any temporal aspect to variation in the covariance matrices by comparing the
use of covariance matrices calculated from spectra obtained in various months of the year in the
retrieval.

• A wider temporal range of spectral data could also be employed in the calculation of the various
covariance matrices; this investigation has used data only from the year 2020.

Additionally, if further work in creating more representative covariance matrices is attempted, the use
of IASI data to classify land surfaces into different regions based on emissivity is recommended, rather
than the use of biome classifications. This will limit the uncertainties introduced. More generally, an
investigation into why the determinants of the total error covariance matrices are so close to zero, and
what this means for the accuracy of the SO2 column amounts calculated using the linear retrieval is
suggested. The cause of the unknown bug causing null value errors should also be established.

5 Conclusions

The study establishes that around 100,000 spectra are needed to calculate a representative covariance
matrix (Section 3.1.2). It is shown that there are significant differences between the covariance matrices
calculated for 20 different land surface types and cloud fractions (Section 3.1.1). The factor which appears
to have the greatest role in causing variance between the covariance matrices is cloud cover, with both
latitude bands and surface type playing a more minor role for the ocean and land surface types respec-
tively. The exception to this is the cloud-free ice land surface type covariance matrix, which displays
significantly different behaviour. This should be investigated further as a potential scenario in which
using a more representative covariance matrix may be vital in achieving accurate results from the Fast
Linear Retrieval.

It is suggested that the impact of the use of more representative covariance matrices on the results
of the fast linear retrieval may vary greatly depending on which absorption band is used (Section 3.2).
In this investigation, the results of the ν1 band retrievals were found to vary significantly more than the
results of the ν3 band retrieval. There was, in particular, a distinct difference in performance between
those retrievals using covariance matrices constructed from ensemble spectra over land, and those using
covariance matrices constructed from ensemble spectra over the ocean. The former appeared to produce
significant potentially false positive, scattered flagging over land whilst the latter had reduced sensitivity
to lower SO2 column amounts. Whilst it has been established that the total error covariance matrices
vary greatly depending on the categories of the ensemble spectra used to construct them, an investigation
into the impact of using these matrices on the various linear retrievals has not been completed. This is
a key area for further exploration, as outlined in Section 4.
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[20] Martins, João, Isabel Trigo, Virǵılio Bento, and Carlos Da Camara. ‘A Physically Constrained
Calibration Database for Land Surface Temperature Using Infrared Retrieval Algorithms’. Remote
Sensing 8, no. 10 (2016): 808. https://doi.org/10.3390/rs8100808.

[21] Taylor, Isabelle A., Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather,
and David M. Pyle. ‘A Satellite Chronology of Plumes from the April 2021 Eruption of
La Soufrière, St Vincent’. Atmospheric Chemistry and Physics 23, no. 24 (2023): 15209–34.
https://doi.org/10.5194/acp-23-15209-2023.

21


