
Mechanics I

Prelims: Mechanics: 1

1. The position vector of a particle moving in the x-y plane is given by a vector of magnitude r
and an angle θ with the x-axis. At t = 0, r = 4i+ 3j (cm).

(a) Find a unit vector û that makes an angle θ = 20◦ with r.

(b) Show by geometrical construction that any vector in the x-y plane may be obtained by

linear combination of r and u.

(c) Assume that at t = 0 the particle starts to move in circular motion about the origin, at

a constant speed v = 15 cm s−1. Explain why the motion is still accelerated. Show by

geometrical illustration that the velocity is tangent to the path. Is this only true for circular

motion?

(d) Find the dependence of θ on time, hence obtain expressions for r and the velocity v as a

function of time.

2. (a) Consider the period of a simple pendulum with length l and bob of mass m moving under

gravity. Show on dimensional grounds that a likely relationship for the period is

T = kf(θ0)
√

l/g,

where θ0 is the angular amplitude, k a dimensionless constant and f an arbitrary function.

(b) For a satellite with mass m, in a circular orbit of radius R about a planet of mass M
(M ≫ m), use the method of dimensions to show that the period of revolution is given

by T 2 = k R3

GM
, where G is Newton’s constant.

(c) Use Coulomb’s law for the force between two charges q1, q2 a distance r apart, FE =
1

4πǫ0

q1q2
r2

, to find the dimensions of ǫ0. Next, use the expression for the force between

two parallel wires of length l, a distance d apart, carrying currents I1, I2, FM = µ0

4π
I1I2
d
l,

to find the dimensions of µ0. Finally, show that the combination
√

1

µ0ǫ0
has dimensions

[LT−1] and find its numerical value from a table of physical constants. Comment on the

result.

3. A pendulum bob of mass m, at the end of a string of length l starts from rest with the string

taut and horizontal – see figure.

At the lowest point of swing the bob strikes a stationary object of mass 2m resting on a fric-

tionless horizontal surface. The collision is elastic. Find (using energy considerations):

(a) the speed of the bob just before impact,

(b) the tension in the string at the same instant,

(c) the velocity given to the object by the impact.

(d) After the impact the bob will recoil to reach a new maximum height before resuming

oscillations. Find the maximum angle (to the vertical) that the string makes in subsequent

oscillations of the bob.
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Figure 1:

4. A particle of mass m constrained to move in the x-direction only is subject to a force F (x) =
−kx, where k is a constant. Show that the equation of motion can be written in the form

d2x

dt2
+ ω2

0x = 0, where ω2
0 = k/m.

(a) Show by direct substitution that the expression

x = A cosω0t+B sinω0t

where A and B are constants, is a solution and explain the physical significance of the

quantity ω0. Show that an alternative solution may be expressed as

x = xmax cos(ω0t+ φ)

where xmax is the amplitude and φ is the phase constant of oscillation.

(b) Find in terms of m and ω0 the change in the potential energy V (x)− V (0) of the particle

as it moves from the origin. Explain the physical significance of the sign of your result.

(c) The potential energy is subject to an arbitrary additive constant; it is convenient to take

V (0) = 0. The kinetic energy T (x) = 1

2
mv2. Show by differentiation that the particle’s

total energy (E = T + V ) is constant. Express E as a function of the particle’s (a)

maximum displacement xmax and (b) maximum velocity vmax.

5. A particle of mass m, starting from x = −∞, approaches a force region whose potential is

given by

U(x) =
U0a

2

x2 + a2
,

where U0 > 0 and a are constants.

(a) Derive an expression for the force on the particle as a function of x.
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(b) Draw rough graphs of the force and the potential as functions of x.

(c) State in which region the force is attractive and which repulsive, and explain how your

answers can be understood in terms of your graphs.

(d) If a particle is released at rest from the origin, with what velocity will it be travelling at

very large distances?

(e) What is the least velocity it must be given at x = −∞ which will allow it to reach +∞?

6. Consider two particles m1 and m2 moving in one dimension with a force of magnitude Fint

between them (attractive, say, for definiteness). They are also acted on by external forces

F1, F2. Let the particles have co-ordinates x1, x2 respectively, with x1 < x2.

(a) Write down the equations of motion of the two masses separately. By adding your two

expressions, get a single equation of motion for the system in terms of F1 and F2.

(b) Hence show that if there are no external forces present (i.e. F1 = F2 = 0) the momentum

of the system is conserved.

(c) Write down an expression for the position xcm of the centre of mass of the system. By

differentiating your expression, show that the momentum of the system is the same as

that of a mass M = m1 +m2 moving with the velocity of the centre of mass.

(d) Differentiate again, and compare your result with the equation obtained in (a) above.

Hence show that the acceleration of the centre of mass is as if all the mass were concen-

trated there and both external forces acted through it. What happens to the centre of mass

of the system if there are no external forces?

(e) Assume that the two masses are isolated in an inertial reference frame (no external forces:

F1 = F2 = 0) and consider the motion of the particles in the CM frame using the co-

ordinates x′

i = xi − xcm (i = 1, 2). Show that the equation of motion of the system in

the (CM) frame under the influence of the internal force is given by Newton’s second as

µẍ = Fint where µ is the reduced mass of the two particle system, 1/µ = 1/m1 + 1/m2

and x = x1 − x2 is the relative distance between the two particles.

7. A runaway (frictionless!) railway truck A of mass m is moving along the track at velocity v
and hits a stationary truck B of identical mass m. By considering the conservation of linear

momentum and energy, assuming the collision between the trucks to be elastic, determine the

velocities, vA and vB, of the two trucks after the collision.

Now consider the same collision as viewed by an observer O’ located at the Centre of Mass

(CM) and moving at constant velocity VCM with respect to B.

(a) Calculate VCM and explain why it remains unchanged after the collision.

(b) Show that the total momentum in the CM frame is zero (hence the alternative name Zero

Momentum Frame).

(c) Determine the initial and final velocities of the two trucks as viewed by O’, and illustrate

your solution both before and after the collision with simple, clearly labelled sketches.

Notice that in the CM frame, the magnitude of the velocity of each truck remains un-

changed after the collision.
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(d) Discuss the advantages of observing collisions in the CM frame.

8. A similar situation as in the previous question but now truck A has mass mA and initial velocity

uA. Truck B has mass mB and is initially at rest. The collision is elastic.

(a) Show the subsequent velocities vA, vB in the laboratory frame are:

vA = (mA −mB)uA/(mA +mB), vB = 2mAuA/(mA +mB).

On the basis of these results, find the velocities in the two limiting cases:

(i) mA ≫ mB; (ii) mA ≪ mB.

(b) Find the subsequent initial and final velocities u′

A, u′

B and v′A, v′B in the CM Frame.

9. Consider the problem of the colliding railway trucks of Q7. Suppose now that the collision is

inelastic, such that half the initial kinetic energy is ‘lost’ during the collision.

(a) By considering the conservation of linear momentum and the changes in the total kinetic

energy of the system, determine the velocities, vA and vB, of the two trucks after the

collision in the stationary reference frame. Discuss where the ‘lost’ kinetic energy might

have gone (in what sense is it really ‘lost’?).

(b) Newton’s coefficient of restitution e is defined as the ratio of the relative speed of separa-

tion of the two colliders to that of their initial approach.

e =
|vB − vA|

|uA − uB|

Determine the value of e for the inelastic collision in (a) above.

(c) Consider the same inelastic collision in (a) as viewed by the observer in the CM frame.

What are the final velocities v′A and v′B of the two trucks in this frame. Verify that the

value of the coefficient of restitution e′ in this frame is the same as in part (b)

10. A highly (though not perfectly) elastic ball is released from rest at a height h above the ground

and bounces up and down. With each bounce a fraction f of its kinetic energy just before

impact is lost. Hence show that the height reached on the nth bounce is hn = (1− f)nh. Find

the time taken for the ball to drop from height hn and subsequently reach hn+1. Hence find an

expression for the time taken for the ball to come to rest and evaluate it for the case when h is

5 m and f is 0.1.

11. (a) A uniform chain of length L and mass m is stretched out on a frictionless horizontal table

with part of its length h hanging down through a hole in the table. Assuming that the

chain is released from rest, how long will it take the chain to fall off. Neglect the friction

between the hole and the chain.
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(b) The chain in (a) is held stretched vertically just above the surface of a scale and then

released from rest. What is the reading of the scale when half of the length of the chain

has fallen down?

12. A block of mass m slides on the frictionless surface of an inclined plane of angle θ ,which itself

has a mass M and allowed to slide on a horizontal surface. Assuming no friction between the

surfaces:

(a) Write the equations of motion of the block and the inclined plane in vectorial form as

viewed in an inertial reference frame.

(b) By resolving the equations in (a) into components in a suitable coordinate system, find

the acceleration of the block and the inclined plane.

(c) Calculate the internal force that the block and the inclined plane apply on each other.

(d) Show by direct substitution that the horizontal component of the linear momentum of the

system remains constant.
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